Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Individual tumour cells move in three-dimensional environments with either a rounded or an elongated 'mesenchymal' morphology. These two modes of movement are tightly regulated by Rho family GTPases: elongated movement requires activation of Rac1, whereas rounded/amoeboid movement engages specific Cdc42 and Rho signalling pathways. In siRNA screens targeting the genes encoding guanine nucleotide exchange factors (GEFs), we found that the Ras GEF RasGRF2 regulates conversion between elongated- and rounded-type movement. RasGRF2 suppresses rounded movement by inhibiting the activation of Cdc42 independently of its capacity to activate Ras. RasGRF2 and RasGRF1 directly bind to Cdc42, outcompeting Cdc42 GEFs, thereby preventing Cdc42 activation. By this mechanism, RasGRFs regulate other Cdc42-mediated cellular processes such as the formation of actin spikes, transformation and invasion in vitro and in vivo. These results demonstrate a role for RasGRF GEFs as negative regulators of Cdc42 activation. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Nature Cell Biology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)