Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Artificial intelligence-based non-invasive bilirubin prediction for neonatal jaundice using 1D convolutional neural network.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Makhloughi F;Makhloughi F
  • المصدر:
    Scientific reports [Sci Rep] 2025 Apr 04; Vol. 15 (1), pp. 11571. Date of Electronic Publication: 2025 Apr 04.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
      Neonatal jaundice, characterized by elevated bilirubin levels causing yellow discoloration of the skin and eyes in newborns, is a critical condition requiring accurate and timely diagnosis. This study proposes a novel approach using 1D Convolutional Neural Networks (1DCNN) for estimating bilirubin levels from RGB, HSV, LAB, and YCbCr color channels extracted from infant images. Initially, each color channel is treated as a time series input to a 1DCNN model, facilitating bilirubin level prediction through regression analysis. Subsequently, RGB feature maps are combined with those derived from HSV, LAB, and YCbCr channels to enhance prediction performance. The effectiveness of these methods is evaluated based on Root Mean Squared Error (RMSE), R-squared (R 2 ), and Mean Absolute Error (MAE). Additionally, the best-performing model is adapted for classification of jaundice status. The results show that the integration of RGB and HSV color spaces yields the best performance, with an RMSE of 1.13 and an R 2 score of 0.91. Moreover, the model achieved an impressive accuracy of 96.87% in classifying jaundice status into three categories. This study provides a promising non-invasive alternative for neonatal jaundice detection, potentially improving early diagnosis and management in clinical settings.
      (© 2025. The Author(s).)
    • References:
      Olusanya, B. O., Kaplan, M. & Hansen, T. W. Neonatal hyperbilirubinaemia: A global perspective. Lancet Child Adolesc. Health 2(8), 610–620 (2018). (PMID: 30119720)
      Maheshwari, V., Díaz-González de Ferris, M. E., Filler, G. & Kotanko, P. Novel extracorporeal treatment for severe neonatal jaundice: A mathematical modelling study of allo-hemodialysis. Sci. Rep. 14(1), 21910 (2024). (PMID: 3930015911413165)
      Rennie, J., Burman-Roy, S. & Murphy, M. S. Neonatal jaundice: Summary of NICE guidance. Bmj 340 (2010).
      Kirk, J. M. Neonatal jaundice: A critical review of the role and practice of bilirubin analysis. Ann. Clin. Biochem. 45(5), 452–462 (2008). (PMID: 18753416)
      van der Geest, B. A. et al. Assessment, management, and incidence of neonatal jaundice in healthy neonates cared for in primary care: a prospective cohort study. Sci. Rep. 12(1), 14385 (2022). (PMID: 359992379399078)
      Singla, R. & Singh, S. A framework for detection of jaundice in new born babies using homomorphic filtering based image processing. In 2016 International Conference on Inventive Computation Technologies (ICICT) Vol. 3, 1–5 (IEEE, 2016).
      Cohen, R. S., Wong, R. J. & Stevenson, D. K. Understanding neonatal jaundice: a perspective on causation. Pediatr. Neonatol. 51(3), 143–148 (2010). (PMID: 20675237)
      Halder, A. et al. A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J. Biomed. Health Inform. 23(6), 2347–2353 (2019). (PMID: 30640639)
      Ahmadpour-Kacho, M. et al. Cord blood alkaline phosphatase as an indicator of neonatal jaundice. Iran. J. Pediatrics 25(5) (2015).
      Seidman, D. S. et al. Neonatal hyperbilirubinemia and physical and cognitive performance at 17 years of age. Pediatrics 88(4), 828–833 (1991). (PMID: 1896294)
      Boskabadi, H., Zakerihamidi, M., Moradi, A. & Bakhshaee, M. Risk factors for sensorineural hearing loss in neonatal hyperbilirubinemia. Iran. J. Otorhinolaryngol. 30(99), 195 (2018). (PMID: 300835256064763)
      Tsao, P.-C. et al. Long-term neurodevelopmental outcomes of significant neonatal jaundice in Taiwan from 2000–2003: A nationwide, population-based cohort study. Sci. Rep. 10(1), 11374 (2020). (PMID: 326473187347619)
      Porter, M. L. & Dennis, B. L. Hyperbilirubinemia in the term newborn. Am. Fam. Phys. 65(4), 599–607 (2002).
      Riskin, A., Tamir, A., Kugelman, A., Hemo, M. & Bader, D. Is visual assessment of jaundice reliable as a screening tool to detect significant neonatal hyperbilirubinemia?. J. Pediatrics 152(6), 782–787 (2008).
      De Greef, L. et al. Bilicam: Using mobile phones to monitor newborn jaundice. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing 331–342 (2014).
      Kesarwani, A., Das, S., Dalui, M. & Kisku, D. R. Non-invasive haemoglobin estimation using different colour and texture features of palm. In International Conference on Computer Vision and Image Processing 176–189 (Springer, Cham, 2022).
      Sanpavat, S. & Nuchprayoon, I. Transcutaneous bilirubin in the pre-term infants. J.-Med. Assoc. Thailand 90(9), 1803 (2007).
      Rahmawati, D., Sampurna, M. T. A., Etika, R., Utomo, M. T. & Bos, A. F. Transcutaneous bilirubin level to predict hyperbilirubinemia in preterm neonates. F1000Research 9 (2020).
      Boo, N. Y. & Ishak, S. Prediction of severe hyperbilirubinaemia using the Bilicheck transcutaneous bilirubinometer. J. Paediatr. Child Health 43(4), 297–302 (2007). (PMID: 17444833)
      Engle, W. D., Jackson, G. L., Stehel, E. K., Sendelbach, D. M. & Manning, M. D. Evaluation of a transcutaneous jaundice meter following hospital discharge in term and near-term neonates. J. Perinatol. 25(7), 486–490 (2005). (PMID: 15908989)
      Dam-Vervloet, A. J. et al. Skin color influences transcutaneous bilirubin measurements: A systematic in vitro evaluation. Pediatric Res. 1–5 (2024).
      Taylor, J. A. et al. Discrepancies between transcutaneous and serum bilirubin measurements. Pediatrics 135(2), 224–231 (2015). (PMID: 256019814306797)
      Taylor, J. A. et al. Use of a smartphone app to assess neonatal jaundice. Pediatrics 140(3) (2017).
      Abdulrazzak, A. Y., Mohammed, S. L., Al-Naji, A. & Chahl, J. Neonatal jaundice detection using machine-learning algorithms: A comparative study. In AIP Conference Proceedings Vol. 3232, no. 1 (AIP Publishing, 2024).
      Aydın, M., Hardalaç, F., Ural, B. & Karap, S. Neonatal jaundice detection system. J. Med. Syst. 40, 1–11 (2016).
      Munkholm, S. B., Krøgholt, T., Ebbesen, F., Szecsi, P. B. & Kristensen, S. R. The smartphone camera as a potential method for transcutaneous bilirubin measurement. PLoS ONE 13(6), e0197938 (2018). (PMID: 298567935983497)
      Kawano, S., Zin, T. T. & Kodama, Y. A study on non-contact and non-invasive neonatal jaundice detection and bilirubin value prediction. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE) 401–402 (IEEE, 2018).
      Juliastuti, E., Nadhira, V., Satwika, Y. W., Aziz, N. A. & Zahra, N. Risk zone estimation of newborn jaundice based on skin color image analysis. In 2019 6th International Conference on Instrumentation, Control, and Automation (ICA) 176–181 (IEEE, 2019).
      Hashim, W., Al-Naji, A., Al-Rayahi, I. A. & Oudah, M. Computer vision for jaundice detection in neonates using graphic user interface. In IOP Conference Series: Materials Science and Engineering vol. 1105, no. 1, 012076 (IOP Publishing, 2021).
      Ali, S. K., Zou, B. & Ali, A. An algorithm for diagnosis of the three kinds of constitutional jaundice. Int. Arab J. Inf. Technol. 7(4), 441–448 (2010).
      Mansor, M., Hariharan, M., Basah, S. N. & Yaacob, S. New newborn jaundice monitoring scheme based on combination of pre-processing and color detection method. Neurocomputing 120, 258–261 (2013).
      Swarna, S., Pasupathy, S., Chinnasami, B., Manasa, D. & Ramraj, B. The smart phone study: assessing the reliability and accuracy of neonatal jaundice measurement using smart phone application. Int. J. Contemp. Pediatr, 5(285) (2018).
      Saini, N. & Kumar, A. Comparison of non-invasive Bilirubin detection techniques for Jaundice prediction. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 4(5), 151–153 (2016).
      Outlaw, F., Meek, J., MacDonald, L. W. & Leung, T. S. Screening for neonatal jaundice with a smartphone. In Proceedings of the 2017 International Conference on Digital Health 241–242 (2017).
      Castro-Ramos, J. et al. Detecting jaundice by using digital image processing. In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXI, vol. 8949 290–296 (SPIE, 2014).
      Lanjewar, M. G., Parab, J. S., Shaikh, A. Y. & Sequeira, M. CNN with machine learning approaches using ExtraTreesClassifier and MRMR feature selection techniques to detect liver diseases on cloud. Clust. Comput. 26(6), 3657–3672 (2023).
      Lanjewar, M. G., Panchbhai, K. G. & Patle, L. B. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput. Biol. Med. 169, 107914 (2024). (PMID: 38190766)
      Wang, D. et al. A real-world dataset and benchmark for foundation model adaptation in medical image classification. Sci. Data 10(1), 574 (2023). (PMID: 3766010610475041)
      Chernov, V., Alander, J. & Bochko, V. Integer-based accurate conversion between RGB and HSV color spaces. Comput. Electr. Eng. 46, 328–337 (2015).
      Kiranyaz, S. et al. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 151, 107398 (2021).
      Kilichev, D. & Kim, W. Hyperparameter optimization for 1D-CNN-based network intrusion detection using GA and PSO. Mathematics 11(17), 3724 (2023).
      Shen, S.C.-Y. & Buehler, M. J. Nature-inspired architected materials using unsupervised deep learning. Commun. Eng. 1(1), 37 (2022). (PMID: 10955928)
      Rainio, O., Teuho, J. & Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 14(1), 6086 (2024). (PMID: 3848084710937649)
      Laddi, A., Kumar, S., Sharma, S. & Kumar, A. Non-invasive jaundice detection using machine vision. IETE J. Res. 59(5), 591–596 (2013).
      Leung, T. S. et al. Screening neonatal jaundice based on the sclera color of the eye using digital photography. Biomed. Opt. Express 6(11), 4529–4538 (2015). (PMID: 266010154646559)
      Chakraborty, A., Goud, S., Shetty, V. & Bhattacharyya, B. Neonatal jaundice detection system using CNN algorithm and image processing. Int. J. Electr. Eng. Technol. 11(3) (2020).
      Althnian, A., Almanea, N. & Aloboud, N. Neonatal jaundice diagnosis using a smartphone camera based on eye, skin, and fused features with transfer learning. Sensors 21(21), 7038 (2021). (PMID: 347703458588081)
      Yuan, Y. et al. Application of machine learning algorithms for accurate determination of bilirubin level on in vitro engineered tissue phantom images. Sci. Rep. 14(1), 5952 (2024). (PMID: 3846767610928098)
    • Contributed Indexing:
      Keywords: Bilirubin level prediction; Image processing; Neonatal jaundice; One dimensional convolutional neural network
    • الرقم المعرف:
      RFM9X3LJ49 (Bilirubin)
    • الموضوع:
      Date Created: 20250404 Date Completed: 20250515 Latest Revision: 20250516
    • الموضوع:
      20250519
    • الرقم المعرف:
      PMC11971457
    • الرقم المعرف:
      10.1038/s41598-025-96100-9
    • الرقم المعرف:
      40185821