Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100968562 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2458 (Electronic) Linking ISSN: 14712458 NLM ISO Abbreviation: BMC Public Health Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2001-
    • الموضوع:
    • نبذة مختصرة :
      Competing Interests: Declarations. Ethics approval and consent to participate: Each round of CHARLS investigation was approved by the Biomedical Ethics Committee of Peking University. The field work plan of this round of household questionnaire survey has been approved, and the approval number is IRB00001052-11015. All participants provided written informed consent. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
      Background: Metabolic diseases (MDs), exemplified by diabetes, hypertension, and dyslipidemia, have become increasingly prevalent with rising living standards, posing significant public health challenges. The MDs are influenced by a complex interplay of genetic factors, lifestyle choices, and socioeconomic conditions. Additionally, environmental pollutants, particularly air pollutants (APs), have attracted increasing attention for their potential role in exacerbating these MDs. However, the impact of APs on the MDs remains unclear. This study introduces a novel machine learning (ML) pipeline, an Algorithm for Spatial Relationships Analysis between Exposome and Metabolic Diseases (ASEMD), to analyze spatial associations between APs and MDs at the prefecture-level city scale in China.
      Methods: The ASEMD pipeline comprises three main steps: (i) Spatial autocorrelation between APs and MDs is evaluated using Moran's I statistic and Local Indicators of Spatial Association (LISA) maps. (ii) dimensionality reduction and spatial similarities identification between APs and MDs clusters using Principal Component Analysis (PCA), k-means clustering, and Jaccard index calculations, further validated through spatial maps. (iii) AP exposure is adjusted by demographic and lifestyle confounders to predict MDs using machine learning models (e.g., eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Decision Tree (DT), LightGBM, and Multi-Layer Perceptron (MLP)). SHAP values are employed to identify key adjusted APs that are linked to MDs. Model performance is evaluated through 10-fold cross-validation using five different metrics. The data utilized include CHARLS (2015) and meteorological data (2013-2015).
      Results: Significant spatial correlations were found between APs and the prevalence of diabetes, dyslipidemia, and hypertension, with higher prevalence rates observed in alignment with elevated APs concentrations. By adjusting for demographic and lifestyle confounders, APs effectively predicted the risk of developing MDs (AUROC=0.890, 0.877, 0.710 for diabetes, dyslipidemia, and hypertension, respectively). The results showed that INLINEMATH , INLINEMATH , and INLINEMATH were strongly correlated with diabetes, whereas INLINEMATH , INLINEMATH , and INLINEMATH were significantly associated with dyslipidemia. For hypertension, INLINEMATH , INLINEMATH , and INLINEMATH were mostly correlated. Sensitivity analyses across different regions and different types of APs underscored the robustness of our conclusions.
      Conclusion: The ASEMD pipeline successfully integrates ML models, epidemiological methods, and spatial analysis techniques, providing a robust framework for understanding the complex interactions between APs and MDs. We also identified specific APs, including INLINEMATH , INLINEMATH , and INLINEMATH , as being strongly linked to higher rates of diabetes, dyslipidemia, and hypertension in central and northern cities. Future region-specific public health strategies or interventions, especially in those areas with high pollutant levels, are needed to mitigate air pollution's impact on metabolic health.
      (© 2025. The Author(s).)
    • References:
      Sci Total Environ. 2024 Nov 15;951:175743. (PMID: 39182784)
      J Hazard Mater. 2024 Jul 5;472:134513. (PMID: 38735183)
      Wiley Interdiscip Rev Comput Stat. 2024 Jan-Feb;16(1):. (PMID: 38699459)
      Neurology. 2014 Aug 5;83(6):486-93. (PMID: 24991031)
      Ecotoxicol Environ Saf. 2023 Jun 20;262:115140. (PMID: 37348216)
      Environ Res. 2024 Jul 1;252(Pt 3):118965. (PMID: 38642640)
      Am J Epidemiol. 2019 Nov 1;188(11):1871-1877. (PMID: 31364691)
      JAMA Netw Open. 2021 Oct 1;4(10):e2130143. (PMID: 34694390)
      Medicine (Baltimore). 2019 May;98(22):e15634. (PMID: 31145279)
      Methodist Debakey Cardiovasc J. 2024 Nov 05;20(5):47-58. (PMID: 39525378)
      Annu Rev Public Health. 2020 Apr 2;41:21-36. (PMID: 31577910)
      J Med Virol. 2022 Nov;94(11):5354-5362. (PMID: 35864556)
      Int J Epidemiol. 2014 Feb;43(1):61-8. (PMID: 23243115)
      Int J Mol Med. 2024 Jul;54(1):. (PMID: 38818830)
      J Hazard Mater. 2024 Jul 5;472:134504. (PMID: 38704910)
      Sci Total Environ. 2023 Dec 10;903:166010. (PMID: 37541522)
      J Am Heart Assoc. 2021 Jan 5;10(1):e016890. (PMID: 33381983)
      Cardiovasc Diabetol. 2023 Jun 9;22(1):132. (PMID: 37296457)
      Genomics. 2020 Nov;112(6):5122-5128. (PMID: 32927010)
      Sci Total Environ. 2024 Oct 10;946:174326. (PMID: 38950631)
      Alzheimers Dement. 2020 Dec;16(12):1714-1733. (PMID: 33030307)
      Int J Mol Sci. 2021 Nov 09;22(22):. (PMID: 34829978)
      Am J Hypertens. 2023 Jul 14;36(8):431-438. (PMID: 37058613)
      BMJ. 2020 Apr 28;369:m997. (PMID: 32345662)
      J Hazard Mater. 2024 Jul 15;473:134693. (PMID: 38781855)
      Environ Health. 2022 Sep 10;21(1):84. (PMID: 36088422)
      Environ Sci Pollut Res Int. 2024 Jan;31(1):549-563. (PMID: 38015390)
      Environ Pollut. 2020 Mar;258:113589. (PMID: 31841764)
      Front Pharmacol. 2023 Oct 12;14:1282403. (PMID: 37900169)
      Cell Biosci. 2020 Feb 21;10:19. (PMID: 32110378)
      Sci Total Environ. 2019 Mar 20;657:213-221. (PMID: 30543969)
      Ecotoxicol Environ Saf. 2024 Jul 15;280:116589. (PMID: 38878334)
      Atherosclerosis. 2024 Jul;394:117545. (PMID: 38688749)
      N Engl J Med. 2021 Nov 11;385(20):1881-1892. (PMID: 34758254)
      Ann Am Thorac Soc. 2023 Dec;20(12):1718-1725. (PMID: 37683277)
      Cell Metab. 2023 Mar 7;35(3):414-428.e3. (PMID: 36889281)
      Nat Commun. 2025 Feb 6;16(1):1408. (PMID: 39915479)
      Ecotoxicol Environ Saf. 2024 Jul 15;280:116524. (PMID: 38838464)
      Metabolism. 2023 Apr;141:155402. (PMID: 36717058)
      Nat Comput Sci. 2023 Oct;3(10):883-893. (PMID: 38177751)
      Chemosphere. 2020 Jul;250:126288. (PMID: 32114347)
      J Hazard Mater. 2024 Aug 5;474:134715. (PMID: 38838524)
      BMJ Open. 2021 Jan 13;11(1):e042053. (PMID: 33441360)
      Nutrients. 2024 Apr 21;16(8):. (PMID: 38674925)
      BMC Med. 2025 Jan 29;23(1):48. (PMID: 39876009)
      Metabolism. 2024 Nov;160:155999. (PMID: 39151887)
      Arch Neurol. 2009 Mar;66(3):324-8. (PMID: 19273750)
      JAMA Neurol. 2023 Jul 1;80(7):723-731. (PMID: 37252710)
      BMC Med Res Methodol. 2024 Aug 28;24(1):188. (PMID: 39198744)
      Sci Rep. 2017 Aug 22;7(1):9144. (PMID: 28831041)
      Int J Hypertens. 2021 Apr 09;2021:5528007. (PMID: 33936811)
      Diabetes Res Clin Pract. 2022 Jun;188:109924. (PMID: 35584716)
    • Grant Information:
      23ZR1436400 Shanghai Natural Science Foundation; 23ZR1436400 Shanghai Natural Science Foundation; 23ZR1436400 Shanghai Natural Science Foundation; 23ZR1436400 Shanghai Natural Science Foundation; 23ZR1436400 Shanghai Natural Science Foundation; 23ZR1436400 Shanghai Natural Science Foundation
    • Contributed Indexing:
      Keywords: Air Pollutant; Machine Learning; Metabolic Disease
    • الرقم المعرف:
      0 (Air Pollutants)
    • الموضوع:
      Date Created: 20250302 Date Completed: 20250303 Latest Revision: 20250305
    • الموضوع:
      20250305
    • الرقم المعرف:
      PMC11871637
    • الرقم المعرف:
      10.1186/s12889-025-22077-9
    • الرقم المعرف:
      40025455