Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Vertical distribution of methanotrophic archaea in an iron-rich groundwater discharge zone.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science
    • الموضوع:
    • نبذة مختصرة :
      Competing Interests: The authors have declared that no competing interests exist.
      Anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) is a crucial process for methane removal in terrestrial environments. However, the occurrence of Fe-AOM in natural environments is rare, and the mechanisms behind the direct coupling of methane oxidation and iron reduction remain poorly understood. In this study, we investigated the environmental factors influencing the distribution of methanotrophic archaea in an iron-rich zone of a freshwater pond in Hiroshima Prefecture, Japan. High concentration of dissolved ferrous iron supplied by groundwater discharge led to considerable ferrihydrite precipitation. Pore water methane increased with sediment depth, while nitrate and sulfate concentrations were near detection limits throughout the sediment column. The coexistence of ferric iron and methane suggests the ongoing process of Fe-AOM. Tracer-based experiments using 14C showed potential Fe-AOM rates up to 110 pmol mL-1 day-1. Throughout the sediment core, except at the surface, PCR-based molecular ecological analyses of the 16S rRNA gene and functional genes for anaerobic oxidation of methane revealed abundant sequences belonging to the family "Candidatus Methanoperedenaceae". These geochemical and microbiological findings suggest that Fe-AOM plays a key role in biogeochemical cycles of iron and methane, positioning this environment as a modern analogue of early Earth conditions.
      (Copyright: © 2025 Yanagawa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Appl Environ Microbiol. 1986 Oct;52(4):751-7. (PMID: 16347168)
      Geobiology. 2011 Jan;9(1):61-78. (PMID: 20854329)
      Appl Environ Microbiol. 2017 May 17;83(11):. (PMID: 28341676)
      Front Microbiol. 2017 Apr 12;8:619. (PMID: 28446901)
      Geobiology. 2016 Jul;14(4):374-89. (PMID: 27027643)
      Nat Rev Microbiol. 2006 Oct;4(10):752-64. (PMID: 16980937)
      ISME J. 2018 Aug;12(8):1929-1939. (PMID: 29662147)
      Sci Rep. 2021 Jan 15;11(1):1597. (PMID: 33452366)
      Front Microbiol. 2020 Jan 17;10:3041. (PMID: 32010098)
      Nat Commun. 2013;4:2120. (PMID: 23979677)
      Nucleic Acids Res. 2002 Jul 15;30(14):3059-66. (PMID: 12136088)
      Microbes Environ. 2022;37(3):. (PMID: 35851269)
      ISME J. 2018 Jan;12(1):31-47. (PMID: 28885627)
      Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
      Curr Opin Biotechnol. 2009 Dec;20(6):623-32. (PMID: 19897353)
      Nucleic Acids Res. 2004 Feb 25;32(4):1363-71. (PMID: 14985472)
      Environ Microbiol. 2016 Jan;18(1):21-37. (PMID: 26060021)
      ISME J. 2019 Aug;13(8):2044-2057. (PMID: 30962514)
      Environ Sci Technol. 2015 Jan 6;49(1):277-83. (PMID: 25412274)
      Nature. 2013 Aug 29;500(7464):567-70. (PMID: 23892779)
      Environ Microbiol. 2022 Feb;24(2):614-625. (PMID: 34951085)
      Nat Commun. 2015 Jun 30;6:7477. (PMID: 26123199)
      Geobiology. 2014 Mar;12(2):172-81. (PMID: 24460948)
      Microbiome. 2015 Apr 13;3:14. (PMID: 25922666)
      Annu Rev Microbiol. 2009;63:311-34. (PMID: 19575572)
      Microbes Environ. 2021;36(4):. (PMID: 34819404)
      Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22. (PMID: 20534432)
      Nature. 2011 Sep 07;477(7365):448-51. (PMID: 21900895)
      Science. 2009 Jul 10;325(5937):184-7. (PMID: 19589998)
      Appl Environ Microbiol. 1997 Dec;63(12):4784-92. (PMID: 9406396)
      FEMS Microbiol Ecol. 2008 May;64(2):240-7. (PMID: 18318714)
      Water Res. 2016 Oct 1;102:445-452. (PMID: 27395029)
      Appl Environ Microbiol. 2008 Oct;74(20):6223-9. (PMID: 18776034)
      Microb Ecol. 2023 Feb;85(2):441-453. (PMID: 35098330)
      Water Res. 2019 Nov 1;164:114935. (PMID: 31387057)
      Environ Microbiol Rep. 2022 Aug;14(4):664-678. (PMID: 35615789)
      Appl Environ Microbiol. 2012 Jan;78(1):236-41. (PMID: 22020519)
      PLoS One. 2010 Mar 10;5(3):e9490. (PMID: 20224823)
      FEMS Microbiol Ecol. 2011 Apr;76(1):26-38. (PMID: 21244447)
      ISME J. 2020 Apr;14(4):1030-1041. (PMID: 31988473)
      Environ Sci Technol. 2010 Jan 1;44(1):74-9. (PMID: 20039736)
      ISME J. 2017 Feb;11(2):529-542. (PMID: 27754478)
      Science. 2014 Nov 7;346(6210):735-9. (PMID: 25378621)
      Appl Environ Microbiol. 2000 Nov;66(11):5066-72. (PMID: 11055964)
      Environ Microbiol Rep. 2023 Jun;15(3):197-205. (PMID: 36779262)
      Chem Rev. 2007 Feb;107(2):486-513. (PMID: 17261072)
      Front Microbiol. 2022 Aug 04;13:951761. (PMID: 35992725)
      Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. (PMID: 27791118)
      Water Res. 2016 Jan 1;88:808-815. (PMID: 26599434)
      Nat Biotechnol. 2019 Aug;37(8):852-857. (PMID: 31341288)
      Front Microbiol. 2015 May 01;6:365. (PMID: 25983723)
      Environ Sci Technol. 2001 Jun 15;35(12):2482-90. (PMID: 11432552)
    • الرقم المعرف:
      OP0UW79H66 (Methane)
      E1UOL152H7 (Iron)
      0 (RNA, Ribosomal, 16S)
    • الموضوع:
      Date Created: 20250224 Date Completed: 20250224 Latest Revision: 20250226
    • الموضوع:
      20250226
    • الرقم المعرف:
      PMC11849818
    • الرقم المعرف:
      10.1371/journal.pone.0319069
    • الرقم المعرف:
      39992937