menu
Item request has been placed!
×
Item request cannot be made.
×

Cornuside alleviates cognitive impairments induced by Aβ 1-42 through attenuating NLRP3-mediated neurotoxicity by promoting mitophagy.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Zhou F;Zhou F; Lian W; Lian W; Yuan X; Yuan X; Wang Z; Wang Z; Xia C; Xia C; Yan Y; Yan Y; Wang W; Wang W; Tong Z; Tong Z; Cheng Y; Cheng Y; Xu J; Xu J; He J; He J; Zhang W; Zhang W
- المصدر:
Alzheimer's research & therapy [Alzheimers Res Ther] 2025 Feb 19; Vol. 17 (1), pp. 47. Date of Electronic Publication: 2025 Feb 19.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: BioMed Central Ltd Country of Publication: England NLM ID: 101511643 Publication Model: Electronic Cited Medium: Internet ISSN: 1758-9193 (Electronic) NLM ISO Abbreviation: Alzheimers Res Ther Subsets: MEDLINE
- بيانات النشر: Original Publication: [London] : BioMed Central Ltd.
- الموضوع: Mitophagy*/drug effects ; NLR Family, Pyrin Domain-Containing 3 Protein*/metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein*/drug effects ; Amyloid beta-Peptides*/toxicity ; Cognitive Dysfunction*/chemically induced ; Cognitive Dysfunction*/drug therapy ; Cognitive Dysfunction*/metabolism ; Peptide Fragments*/toxicity ; Neuroprotective Agents*/pharmacology; Animals ; Mice ; Male ; Mice, Inbred C57BL ; Inflammasomes/drug effects ; Inflammasomes/metabolism ; Disease Models, Animal ; Neurons/drug effects ; Neurons/metabolism
- نبذة مختصرة : Competing Interests: Declarations. Ethics approval and consent to participate: All animal procedures were approved by the Animal Care and Use Committee of China-Japan Friendship Hospital. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which mitochondrial dysfunction and neuroinflammation play crucial roles in its progression. Our previous studies found that cornuside from Cornus officinalis Sieb.Et Zucc is an anti-AD candidate, however, its underlying mechanism remains unknown. In the present study, AD mice were established by intracerebroventricular injection of Aβ1-42 and treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated behavioral deficits, protected synaptic plasticity and relieved neuronal damage in Aβ1-42 induced mice. Importantly, cornuside decreased NLRP3 inflammasome activation, characterized by decreased levels of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. Furthermore, cornuside promoted mitophagy accompanied by decreasing SQSTM1/p62 and promoting LC3B-I transforming into LC3B-II, via Pink1/Parkin signaling instead of FUNDC1 or BNIP3 pathways. In order to investigate the relationship between NLRP3 inflammasome and mitophagy in the neuroprotective mechanism of cornuside, we established an in-vitro model in BV2 cells exposed to LPS and Aβ1-42 . And cornuside inhibited NLRP3 inflammasome activation and subsequent cytokine release, also protected neurons from damaging factors in microenvironment of conditional culture. Cornuside improved mitochondrial function by promoting oxidative phosphorylation and glycolysis, decreasing the production of ROS and mitochondrial membrane potential depolarization. Besides, mitophagy was also facilitated with increased colocalization of MitoTracker with LC3B and Parkin, and Pink1/Parkin, FUNDC1 and BNIP3 pathways were all involved in the mechanism of cornuside. By blocking the formation of autophagosomes by 3-MA, the protective effects on mitochondria, the inhibition on NLRP3 inflammasome as well as neuronal protection in conditional culture were eliminated. There is reason to believe that the promotion of mitophagy plays a key role in the NLRP3 inhibition of cornuside. In conclusion, cornuside re-establishes the mitophagy flux which eliminates damaged mitochondria and recovers mitochondrial function, both of them are in favor of inhibiting NLRP3 inflammasome activation, then alleviating neuronal and synaptic damage, and finally improving cognitive function.
(© 2025. The Author(s).) - Comments: Erratum in: Alzheimers Res Ther. 2025 Mar 19;17(1):63. doi: 10.1186/s13195-025-01715-9.. (PMID: 40108656)
- References: Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25:59–70. (PMID: 2887221510.1111/ene.13439)
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6. (PMID: 1213077310.1126/science.1072994)
Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, Kuruva CS, Bhatti JS, Kandimalla R, Vijayan M, et al. Protective effects of Indian Spice Curcumin against Amyloid-β in Alzheimer’s Disease. J Alzheimers Dis. 2018;61:843–66. (PMID: 29332042579676110.3233/JAD-170512)
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular abeta and synaptic dysfunction. Neuron. 2003;39:409–21. (PMID: 1289541710.1016/S0896-6273(03)00434-3)
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer’s disease. An insight. Front Mol Neurosci. 2022;15:937133. (PMID: 36090249945433110.3389/fnmol.2022.937133)
Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res. 2008;5:525–32. (PMID: 19075578278001510.2174/156720508786898451)
Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22:401–12. (PMID: 30742114669362510.1038/s41593-018-0332-9)
Tan MS, Yu JT, Jiang T, Zhu XC, Tan L. The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol. 2013;48:875–82. (PMID: 2368677210.1007/s12035-013-8475-x)
Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14:1227–35. (PMID: 2195226010.1038/nn.2923)
Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009;64:110–22. (PMID: 19840553283489010.1016/j.neuron.2009.08.039)
Barczuk J, Siwecka N, Lusa W, Rozpedek-Kaminska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci. 2022; 23.
Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, Cui J, Bai L, Wang J, Jiang W, Zhou R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 2017;8:202. (PMID: 28779175554470610.1038/s41467-017-00227-x)
Zhang Y, Zhao Y, Zhang J, Yang G. Mechanisms of NLRP3 inflammasome activation. Its role in the treatment of Alzheimer’s Disease. Neurochem Res. 2020;45:2560–72. (PMID: 3292969110.1007/s11064-020-03121-z)
Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136(Suppl 1):29–38. (PMID: 2611924510.1111/jnc.13217)
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev. 2020;64:101192. (PMID: 3305908910.1016/j.arr.2020.101192)
Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202:17–20. (PMID: 878782010.1016/0304-3940(95)12192-7)
Li L, Ismael S, Nasoohi S, Sakata K, Liao FF, McDonald MP, Ishrat T. Thioredoxin-interacting protein (TXNIP) Associated NLRP3 Inflammasome activation in human Alzheimer’s Disease Brain. J Alzheimers Dis. 2019;68:255–65. (PMID: 307416721094708110.3233/JAD-180814)
Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T. Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging. 2009;30:198–209. (PMID: 1765866610.1016/j.neurobiolaging.2007.06.006)
Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, et al. NF-κB restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell. 2016;164:896–910. (PMID: 26919428476937810.1016/j.cell.2015.12.057)
Cao S, Shrestha S, Li J, Yu X, Chen J, Yan F, Ying G, Gu C, Wang L, Chen G. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep. 2017;7:2417. (PMID: 28546552544506810.1038/s41598-017-02679-z)
Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14. (PMID: 21179058478004710.1038/nrm3028)
Yu L, Che RM, Zhang WK, Xu JK, Lian WW, He J, Tu SX, Bai X, He XL. Cornuside, by regulating the AGEs-RAGE-IκBα-ERK1/2 signaling pathway, ameliorates cognitive impairment associated with brain aging. Phytother Res. 2023;37:2419–36. (PMID: 3678117710.1002/ptr.7765)
Lian WW, Wang ZX, Zhou FL, Yuan XT, Xia CY, Wang WP, Yan Y, Cheng YC, Yang H, Xu JK, et al. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ(1–42) induced Alzheimer’s disease mice. J Neuroimmune Pharmacol. 2024;19:24. (PMID: 3878088510.1007/s11481-024-10120-2)
Zhang WK, Xu JK, He XL, He J, Lian WW, Wang ZX. Application of cornuside in the preparation of drugs for the treatment of Alzheimer’s disease. CN110433168B.
Xu JK, Zhang WK, He J, Lian WW, Peng ZC, Zhang J, Wang ZX, Pan XG. A kind of preparation method of cornuside raw material drug. CN113480585B.
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. (PMID: 29158945566163310.1038/sigtrans.2017.23)
Sbai O, Djelloul M, Auletta A, Ieraci A, Vascotto C, Perrone L. Correction to. RAGE-TXNIP axis drives inflammation in Alzheimer’s by targeting Aβ to mitochondria in microglia. Cell Death Dis. 2022;13:368. (PMID: 35440602901869110.1038/s41419-022-04840-7)
Wang ZX, Lian WW, He J, He XL, Wang YM, Pan CH, Li M, Zhang WK, Liu LQ, Xu JK. Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: involvement of neurotransmitter and oxidative stress. J Ethnopharmacol. 2022;293:115252. (PMID: 3540525510.1016/j.jep.2022.115252)
Wang N, Yang J, Chen R, Liu Y, Liu S, Pan Y, Lei Q, Wang Y, He L, Song Y, Li Z. Ginsenoside Rg1 ameliorates Alzheimer’s disease pathology via restoring mitophagy. J Ginseng Res. 2023;47:448–57. (PMID: 3725227410.1016/j.jgr.2022.12.001)
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–8. (PMID: 2325493010.1038/nature11729)
Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–73. (PMID: 31748742732401510.1038/s41586-019-1769-z)
Lee HJ, Park JH, Hoe HS. Idebenone regulates Aβ and LPS-Induced neurogliosis and cognitive function through inhibition of NLRP3 Inflammasome/IL-1β Axis Activation. Front Immunol. 2022;13:749336. (PMID: 35222363886624110.3389/fimmu.2022.749336)
Bai H, Yang B, Yu W, Xiao Y, Yu D, Zhang Q. Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp Cell Res. 2018;362:180–7. (PMID: 2919616710.1016/j.yexcr.2017.11.015)
Aminzadeh M, Roghani M, Sarfallah A, Riazi GH. TRPM2 dependence of ROS-induced NLRP3 activation in Alzheimer’s disease. Int Immunopharmacol. 2018;54:78–85. (PMID: 2910786410.1016/j.intimp.2017.10.024)
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. (PMID: 1640788910.1038/nature04516)
Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. (PMID: 20428172294664010.1038/nature08938)
Stancu IC, Cremers N, Vanrusselt H, Couturier J, Vanoosthuyse A, Kessels S, Lodder C, Brône B, Huaux F, Octave JN, et al. Aggregated tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded tau pathology in vivo. Acta Neuropathol. 2019;137:599–617. (PMID: 30721409642683010.1007/s00401-018-01957-y)
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–91. (PMID: 1957082210.4049/jimmunol.0901363)
Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183:792–6. (PMID: 1954237210.4049/jimmunol.0900173)
Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li X, Nanda S, Cohen P, Thomas JA, Pasare C. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A. 2014;111:775–80. (PMID: 2437936010.1073/pnas.1320294111)
Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G, An L, Zhang Y, Meng G. Cutting Edge: TRAF6 mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 inflammasome. J Immunol. 2017;199:1561–6. (PMID: 2873988110.4049/jimmunol.1700175)
Christgen S, Place DE, Kanneganti TD. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res. 2020;30:315–27. (PMID: 32152420711810410.1038/s41422-020-0295-8)
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20:143–57. (PMID: 3169084010.1038/s41577-019-0228-2)
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19:609–33. (PMID: 32709961794851610.1038/s41573-020-0072-x)
Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58:495–505. (PMID: 1617802310.1002/ana.20624)
Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57:695–703. (PMID: 1585240010.1002/ana.20474)
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–52. (PMID: 1508754910.1126/science.1091230)
Cardoso SM, Santos S, Swerdlow RH, Oliveira CR. Functional mitochondria are required for amyloid beta-mediated neurotoxicity. Faseb j. 2001;15:1439–41. (PMID: 1138725010.1096/fj.00-0561fje)
Askanas V, McFerrin J, Baqué S, Alvarez RB, Sarkozi E, Engel WK. Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Proc Natl Acad Sci U S A. 1996;93:1314–9. (PMID: 85777614007710.1073/pnas.93.3.1314)
Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265:35–52. (PMID: 25879282440087410.1111/imr.12286)
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9. (PMID: 1662520410.1038/nature04724)
Sita G, Graziosi A, Hrelia P, Morroni F. NLRP3 and infections: beta-amyloid in Inflammasome beyond Neurodegeneration. Int J Mol Sci. 2021;22(13):6984. (PMID: 34209586826848210.3390/ijms22136984)
Milner MT, Maddugoda M, Gotz J, Burgener SS, Schroder K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol. 2021;68:116–24. (PMID: 3318135110.1016/j.coi.2020.10.011)
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome. An overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. (PMID: 31284572665142310.3390/ijms20133328)
Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF. Mitophagy and Neuroprotection. Trends Mol Med. 2020;26:8–20. (PMID: 3137536510.1016/j.molmed.2019.07.002)
Zhang CW, Hang L, Yao TP, Lim KL. Parkin regulation and neurodegenerative disorders. Front Aging Neurosci. 2015;7:248. (PMID: 26793099)
Gkikas I, Palikaras K, Tavernarakis N. The role of Mitophagy in Innate Immunity. Front Immunol. 2018;9:1283. (PMID: 29951054600857610.3389/fimmu.2018.01283)
Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol. 2018;19:93–108. (PMID: 2935868410.1038/nrm.2017.129)
Zheng W, Li K, Zhong M, Wu K, Zhou L, Huang J, Liu L, Chen Z. Mitophagy activation by rapamycin enhances mitochondrial function and cognition in 5×FAD mice. Behav Brain Res. 2024;463:114889. (PMID: 3830193210.1016/j.bbr.2024.114889)
Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16:939–46. (PMID: 1922924410.1038/cdd.2009.16)
Hou X, Watzlawik JO, Cook C, Liu CC, Kang SS, Lin WL, DeTure M, Heckman MG, Diehl NN, Al-Shaikh FSH, et al. Mitophagy alterations in Alzheimer’s disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement. 2020;17:417–30. (PMID: 3309069110.1002/alz.12198)
Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E, Hoe HS. Donepezil regulates LPS and Aβ-Stimulated neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 signaling. Int J Mol Sci. 2021;22(19):10637. (PMID: 34638977850896410.3390/ijms221910637)
de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34:369–75. (PMID: 24398940394813110.1038/jcbfm.2013.227) - Grant Information: 82404883 National Natural Science Foundation of China; 82273815 National Natural Science Foundation of China; 82273809 National Natural Science Foundation of China; ZRJY2023-QM10 National High Level Hospital Clinical Research Funding & Elite Medical Professionals Project of China-Japan Friendship Hospital; ZRJY2023-QM28 National High Level Hospital Clinical Research Funding & Elite Medical Professionals Project of China-Japan Friendship Hospital; ZRJY2024-BJ01 National High Level Hospital Clinical Research Funding & Elite Medical Professionals Project of China-Japan Friendship Hospital; 2024-NHLHCRF-JBGS-WZ-07 National High Level Hospital Clinical Research Funding & Elite Medical Professionals Project of China-Japan Friendship Hospital; 3332023096 Central Universities Fundamental for Basic Scientific Research of Peking Union Medical College
- Contributed Indexing: Keywords: Alzheimer’s disease; Cornuside; Mitophagy; NLRP3; Neuroprotection
- الرقم المعرف: 0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (Amyloid beta-Peptides)
0 (Peptide Fragments)
0 (Nlrp3 protein, mouse)
0 (amyloid beta-protein (1-42))
0 (Inflammasomes)
0 (Neuroprotective Agents) - الموضوع: Date Created: 20250219 Date Completed: 20250509 Latest Revision: 20250509
- الموضوع: 20250509
- الرقم المعرف: PMC11837312
- الرقم المعرف: 10.1186/s13195-025-01695-w
- الرقم المعرف: 39972387
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.