Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Repeat expansion in a fragile X model is independent of double strand break repair mediated by Pol θ, RAD52, RAD54 or RAD54B.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Microsatellite instability is responsible for the human repeat expansion diseases (REDs). The mutagenic process differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models. Thus, NHEJ may compete with the expansion pathway for access to a common intermediate. This raises the possibility that expansion involves an NHEJ-independent form of DSBR. Pol θ, a polymerase involved in the theta-mediated end joining (TMEJ) DSBR pathway, has been proposed to play a role in repeat expansion. Here we examine the effect of the loss of Pol θ on expansion in FXD mouse embryonic stem cells (mESCs), along with the effects of mutations in Rad52, Rad54l and Rad54b, genes important for multiple DSBR pathways. None of these mutations significantly affected repeat expansion. These observations put major constraints on what pathways are likely to drive expansion. Together with our previous demonstration of the protective effect of nucleases like EXO1 and FAN1, and the importance of Pol β, they suggest a plausible model for late steps in the expansion process.
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
      (© 2025. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
    • Comments:
      Update of: bioRxiv. 2024 Nov 06:2024.11.05.621911. doi: 10.1101/2024.11.05.621911.. (PMID: 39574643)
    • References:
      Paulson, H. Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9 (2018). (PMID: 10.1016/B978-0-444-63233-3.00009-9293256066485936)
      Lozano, R., Rosero, C. A. & Hagerman, R. J. Fragile X spectrum disorders. Intractable Rare Dis. Res. 3, 134–146. https://doi.org/10.5582/irdr.2014.01022 (2014). (PMID: 10.5582/irdr.2014.01022256063634298643)
      Entezam, A. et al. Regional FMRP deficits and large repeat expansions into the full mutation range in a new Fragile X premutation mouse model. Gene 395, 125–134. https://doi.org/10.1016/j.gene.2007.02.026 (2007). (PMID: 10.1016/j.gene.2007.02.026174425051950257)
      Zhao, X., Lu, H. & Usdin, K. FAN1’s protection against CGG repeat expansion requires its nuclease activity and is FANCD2-independent. Nucleic Acids Res. 49, 11643–11652. https://doi.org/10.1093/nar/gkab899 (2021). (PMID: 10.1093/nar/gkab899347187018599916)
      Miller, C. J., Kim, G. Y., Zhao, X. & Usdin, K. All three mammalian MutL complexes are required for repeat expansion in a mouse cell model of the Fragile X-related disorders. PLoS Genet. 16, e1008902. https://doi.org/10.1371/journal.pgen.1008902 (2020). (PMID: 10.1371/journal.pgen.1008902325896697347238)
      Zhao, X. N. & Usdin, K. FAN1 protects against repeat expansions in a fragile X mouse model. DNA Repair. (Amst). 69, 1–5. https://doi.org/10.1016/j.dnarep.2018.07.001 (2018). (PMID: 10.1016/j.dnarep.2018.07.00129990673)
      Zhao, X., Zhang, Y., Wilkins, K., Edelmann, W. & Usdin, K. MutLgamma promotes repeat expansion in a fragile X mouse model while EXO1 is protective. PLoS Genet. 14, e1007719. https://doi.org/10.1371/journal.pgen.1007719 (2018). (PMID: 10.1371/journal.pgen.1007719303122996200270)
      Zhao, X. N. et al. A MutSbeta-Dependent contribution of MutSalpha to repeat expansions in Fragile X Premutation mice? PLoS Genet. 12, e1006190. https://doi.org/10.1371/journal.pgen.1006190 (2016). (PMID: 10.1371/journal.pgen.1006190274277654948851)
      Zhao, X. N. et al. Mutsbeta generates both expansions and contractions in a mouse model of the Fragile X-associated disorders. Hum. Mol. Genet. 24, 7087–7096. https://doi.org/10.1093/hmg/ddv408 (2015). (PMID: 10.1093/hmg/ddv408264208414654059)
      Lokanga, R. A., Zhao, X. N. & Usdin, K. The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model. Hum. Mutat. 35, 129–136. https://doi.org/10.1002/humu.22464 (2014). (PMID: 10.1002/humu.22464241301333951054)
      Halabi, A., Fuselier, K. T. B. & Grabczyk, E. GAA*TTC repeat expansion in human cells is mediated by mismatch repair complex MutLgamma and depends upon the endonuclease domain in MLH3 isoform one. Nucleic Acids Res. 46, 4022–4032. https://doi.org/10.1093/nar/gky143 (2018). (PMID: 10.1093/nar/gky143295292365934671)
      Pinto, R. M. et al. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches. PLoS Genet. 9, e1003930. https://doi.org/10.1371/journal.pgen.1003930 (2013). (PMID: 10.1371/journal.pgen.1003930242043233814320)
      Mouro Pinto, R. et al. Identification of genetic modifiers of Huntington’s disease somatic CAG repeat instability by in vivo CRISPR-Cas9 genome editing. bioRxiv. https://doi.org/10.1101/2024.06.08.597823 (2024).
      Savouret, C. et al. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273. https://doi.org/10.1093/emboj/cdg202 (2003). (PMID: 10.1093/emboj/cdg20212727892156074)
      Halabi, A., Ditch, S., Wang, J. & Grabczyk, E. DNA mismatch repair complex MutSbeta promotes GAA.TTC repeat expansion in human cells. J. Biol. Chem. 287, 29958–29967. https://doi.org/10.1074/jbc.M112.356758 (2012). (PMID: 10.1074/jbc.M112.356758227871553436174)
      Gomes-Pereira, M., Fortune, M. T., Ingram, L., McAbney, J. P. & Monckton, D. G. Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13, 1815–1825. https://doi.org/10.1093/hmg/ddh186 (2004). (PMID: 10.1093/hmg/ddh18615198993)
      Ciosi, M. et al. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine 48, 568–580. https://doi.org/10.1016/j.ebiom.2019.09.020 (2019). (PMID: 10.1016/j.ebiom.2019.09.020316075986838430)
      Kim, K. H. et al. Genetic and functional analyses point to FAN1 as the source of multiple Huntington Disease modifier effects. Am. J. Hum. Genet. 107, 96–110. https://doi.org/10.1016/j.ajhg.2020.05.012 (2020). (PMID: 10.1016/j.ajhg.2020.05.012325899237332667)
      Wright, G. E. B. et al. Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease. Hum. Mol. Genet. 29, 2788–2802. https://doi.org/10.1093/hmg/ddaa184 (2020). (PMID: 10.1093/hmg/ddaa184328988627530525)
      Genetic Modifiers of Huntington’s Disease Consortium. CAG repeat not polyglutamine length determines timing of Huntington’s Disease Onset. Cell 178, 887–900. https://doi.org/10.1016/j.cell.2019.06.036 (2019). e814. (PMID: 10.1016/j.cell.2019.06.036)
      Flower, M. et al. MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain. https://doi.org/10.1093/brain/awz115 (2019).
      Hwang, Y. H. et al. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci. Rep. 12, 10419. https://doi.org/10.1038/s41598-022-14183-0 (2022). (PMID: 10.1038/s41598-022-14183-0357291849213438)
      Genetic Modifiers of Huntington’s Disease Consortium. Genetic modifiers of somatic expansion and clinical phenotypes in Huntington’s disease reveal shared and tissue-specific effects. bioRxiv https://doi.org/10.1101/2024.06.10.597797 (2024). (PMID: 10.1101/2024.06.10.597797)
      Sallmyr, A., Rashid, I., Bhandari, S. K., Naila, T. & Tomkinson, A. E. Human DNA ligases in replication and repair. DNA Repair. (Amst) 93, 102908. https://doi.org/10.1016/j.dnarep.2020.102908 (2020). (PMID: 10.1016/j.dnarep.2020.10290833087274)
      Gazy, I., Hayward, B., Potapova, S., Zhao, X. & Usdin, K. Double-strand break repair plays a role in repeat instability in a fragile X mouse model. DNA Repair. (Amst). 74, 63–69. https://doi.org/10.1016/j.dnarep.2018.12.004 (2019). (PMID: 10.1016/j.dnarep.2018.12.00430606610)
      Isik, E. et al. MutSbeta-MutLbeta-FANCJ axis mediates the restart of DNA replication after fork stalling at cotranscriptional G4/R-loops. Sci. Adv. 10, eadk2685. https://doi.org/10.1126/sciadv.adk2685 (2024). (PMID: 10.1126/sciadv.adk26853832468710849593)
      Wyatt, D. W. et al. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol. Cell. 63, 662–673. https://doi.org/10.1016/j.molcel.2016.06.020 (2016). (PMID: 10.1016/j.molcel.2016.06.020274530474992412)
      van Schendel, R., Roerink, S. F., Portegijs, V., van den Heuvel, S. & Tijsterman, M. Polymerase Theta is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis. Nat. Commun. 6, 7394. https://doi.org/10.1038/ncomms8394 (2015). (PMID: 10.1038/ncomms839426077599)
      Stroik, S., Luthman, A. J. & Ramsden, D. A. Templated insertions-DNA repair gets acrobatic. Environ. Mol. Mutagen. https://doi.org/10.1002/em.22564 (2023). (PMID: 10.1002/em.2256437438951)
      Chan, K. Y., Li, X., Ortega, J., Gu, L. & Li, G. M. DNA polymerase theta promotes CAG*CTG repeat expansions in Huntington’s disease via insertion sequences of its catalytic domain. J. Biol. Chem. 297, 101144. https://doi.org/10.1016/j.jbc.2021.101144 (2021). (PMID: 10.1016/j.jbc.2021.101144344739928463855)
      Kelso, A. A., Lopezcolorado, F. W., Bhargava, R. & Stark, J. M. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLoS Genet. 15, e1008319. https://doi.org/10.1371/journal.pgen.1008319 (2019). (PMID: 10.1371/journal.pgen.1008319313815626695211)
      Yousefzadeh, M. J. et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 10, e1004654. https://doi.org/10.1371/journal.pgen.1004654 (2014). (PMID: 10.1371/journal.pgen.1004654252754444183433)
      Schimmel, J., van Schendel, R., den Dunnen, J. T. & Tijsterman, M. Templated insertions: a Smoking Gun for polymerase Theta-mediated end joining. Trends Genet. 35, 632–644. https://doi.org/10.1016/j.tig.2019.06.001 (2019). (PMID: 10.1016/j.tig.2019.06.00131296341)
      Carvajal-Garcia, J. et al. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proc. Natl. Acad. Sci. U S A. 117, 8476–8485. https://doi.org/10.1073/pnas.1921791117 (2020). (PMID: 10.1073/pnas.1921791117322347827165422)
      Hwang, T. et al. Defining the mutation signatures of DNA polymerase theta in cancer genomes. NAR Cancer. 2, zcaa017. https://doi.org/10.1093/narcan/zcaa017 (2020). (PMID: 10.1093/narcan/zcaa017328851677454005)
      He, P. & Yang, W. Template and primer requirements for DNA Pol theta-mediated end joining. Proc. Natl. Acad. Sci. U S A. 115, 7747–7752. https://doi.org/10.1073/pnas.1807329115 (2018). (PMID: 10.1073/pnas.1807329115299870246064989)
      Carvajal-Maldonado, D. et al. Dynamic stem-loop extension by Pol theta and templated insertion during DNA repair. J. Biol. Chem. 300, 107461. https://doi.org/10.1016/j.jbc.2024.107461 (2024). (PMID: 10.1016/j.jbc.2024.1074613887629911292364)
      Yasuhara, T. et al. Human Rad52 promotes XPG-mediated r-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570. https://doi.org/10.1016/j.cell.2018.08.056 (2018).
      McDevitt, S., Rusanov, T., Kent, T., Chandramouly, G. & Pomerantz, R. T. How RNA transcripts coordinate DNA recombination and repair. Nat. Commun. 9, 1091. https://doi.org/10.1038/s41467-018-03483-7 (2018). (PMID: 10.1038/s41467-018-03483-7295455685854605)
      Chappidi, N. et al. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-Loops. Mol. Cell 77, 528–541. https://doi.org/10.1016/j.molcel.2019.10.026 (2020).
      Hatchi, E. et al. BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2-RAD52. Nature 591, 665–670. https://doi.org/10.1038/s41586-020-03150-2 (2021). (PMID: 10.1038/s41586-020-03150-2335366198245199)
      Sotiriou, S. K. et al. Mammalian RAD52 functions in Break-Induced replication repair of collapsed DNA replication forks. Mol. Cell. 64, 1127–1134. https://doi.org/10.1016/j.molcel.2016.10.038 (2016). (PMID: 10.1016/j.molcel.2016.10.038279847465179496)
      Symington, L. S. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol. 6 https://doi.org/10.1101/cshperspect.a016436 (2014).
      Bhowmick, R., Minocherhomji, S. & Hickson, I. D. RAD52 facilitates mitotic DNA synthesis following replication stress. Mol. Cell. 64, 1117–1126. https://doi.org/10.1016/j.molcel.2016.10.037 (2016). (PMID: 10.1016/j.molcel.2016.10.03727984745)
      Kononenko, A. V., Ebersole, T., Vasquez, K. M. & Mirkin, S. M. Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system. Nat. Struct. Mol. Biol. 25, 669–676. https://doi.org/10.1038/s41594-018-0094-9 (2018). (PMID: 10.1038/s41594-018-0094-9300616006082162)
      Neil, A. J., Liang, M. U., Khristich, A. N., Shah, K. A. & Mirkin, S. M. RNA-DNA hybrids promote the expansion of Friedreich’s ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res. 46, 3487–3497. https://doi.org/10.1093/nar/gky099 (2018). (PMID: 10.1093/nar/gky099294473965909440)
      Kan, Y., Batada, N. N. & Hendrickson, E. A. Human somatic cells deficient for RAD52 are impaired for viral integration and compromised for most aspects of homology-directed repair. DNA Repair. (Amst). 55, 64–75. https://doi.org/10.1016/j.dnarep.2017.04.006 (2017). (PMID: 10.1016/j.dnarep.2017.04.00628549257)
      Wesoly, J. et al. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol. Cell. Biol. 26, 976–989. https://doi.org/10.1128/MCB.26.3.976-989.2006 (2006). (PMID: 10.1128/MCB.26.3.976-989.2006164284511347043)
      Gazy, I., Miller, C. J., Kim, G. Y. & Usdin, K. CGG repeat expansion, and elevated Fmr1 transcription and mitochondrial Copy Number in a New Fragile X PM Mouse Embryonic Stem Cell Model. Front. Cell. Dev. Biol. 8, 482. https://doi.org/10.3389/fcell.2020.00482 (2020). (PMID: 10.3389/fcell.2020.00482326957777338602)
      Hogg, M., Seki, M., Wood, R. D., Doublie, S. & Wallace, S. S. Lesion bypass activity of DNA polymerase theta (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J. Mol. Biol. 405, 642–652. https://doi.org/10.1016/j.jmb.2010.10.041 (2011). (PMID: 10.1016/j.jmb.2010.10.04121050863)
      Hayward, B. E., Steinbach, P. J. & Usdin, K. A point mutation in the nuclease domain of MLH3 eliminates repeat expansions in a mouse stem cell model of the Fragile X-related disorders. Nucleic Acids Res. 48, 7856–7863. https://doi.org/10.1093/nar/gkaa573 (2020). (PMID: 10.1093/nar/gkaa573326192247430641)
      Zhao, X., Lu, H., Dagur, P. K. & Usdin, K. Isolation and analysis of the CGG-Repeat size in male and female gametes from a Fragile X Mouse Model. Methods Mol. Biol. 2056, 173–186. https://doi.org/10.1007/978-1-4939-9784-8_11 (2020). (PMID: 10.1007/978-1-4939-9784-8_11315863488862712)
      Baldwin, T. et al. Wound healing response is a major contributor to the severity of cutaneous leishmaniasis in the ear model of infection. Parasite Immunol. 29, 501–513. https://doi.org/10.1111/j.1365-3024.2007.00969.x (2007). (PMID: 10.1111/j.1365-3024.2007.00969.x17883453)
      Elso, C. M. et al. Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2-independent pathway. Genes Immun. 5, 93–100. https://doi.org/10.1038/sj.gene.6364042 (2004). (PMID: 10.1038/sj.gene.636404214668789)
      Misova, I. et al. Repression of a large number of genes requires interplay between homologous recombination and HIRA. Nucleic Acids Res. 49, 1914–1934. https://doi.org/10.1093/nar/gkab027 (2021). (PMID: 10.1093/nar/gkab027335114177913671)
      Peng, G. et al. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat. Commun. 5, 3361. https://doi.org/10.1038/ncomms4361 (2014). (PMID: 10.1038/ncomms436124553445)
      Ray, S. et al. DNA polymerase beta participates in DNA end-joining. Nucleic Acids Res. 46, 242–255. https://doi.org/10.1093/nar/gkx1147 (2018). (PMID: 10.1093/nar/gkx114729161447)
      Crespan, E., Czabany, T., Maga, G. & Hubscher, U. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases lambda and beta on normal and repetitive DNA sequences. Nucleic Acids Res. 40, 5577–5590. https://doi.org/10.1093/nar/gks186 (2012). (PMID: 10.1093/nar/gks186223739173384310)
      Lokanga, R. A., Senejani, A. G., Sweasy, J. B. & Usdin, K. Heterozygosity for a hypomorphic polbeta mutation reduces the expansion frequency in a mouse model of the Fragile X-related disorders. PLoS Genet. 11, e1005181. https://doi.org/10.1371/journal.pgen.1005181 (2015). (PMID: 10.1371/journal.pgen.1005181258861634401650)
      Abdulovic, A. L., Hile, S. E., Kunkel, T. A. & Eckert, K. A. The in vitro fidelity of yeast DNA polymerase delta and polymerase epsilon holoenzymes during dinucleotide microsatellite DNA synthesis. DNA Repair. (Amst). 10, 497–505. https://doi.org/10.1016/j.dnarep.2011.02.003 (2011). (PMID: 10.1016/j.dnarep.2011.02.003214298213121764)
      Mozzherin, D. J. & Fisher, P. A. Human DNA polymerase epsilon: enzymologic mechanism and gap-filling synthesis. Biochemistry 35, 3572–3577. https://doi.org/10.1021/bi952142p (1996). (PMID: 10.1021/bi952142p8639508)
      Kadyrova, L. Y., Gujar, V., Burdett, V., Modrich, P. L. & Kadyrov, F. A. Human MutLgamma, the MLH1-MLH3 heterodimer, is an endonuclease that promotes DNA expansion. Proc. Natl. Acad. Sci. U S A. 117, 3535–3542. https://doi.org/10.1073/pnas.1914718117 (2020). (PMID: 10.1073/pnas.1914718117320151247035508)
      Genschel, J. & Modrich, P. Mechanism of 5’-directed excision in human mismatch repair. Mol. Cell. 12, 1077–1086. https://doi.org/10.1016/s1097-2765(03)00428-3 (2003). (PMID: 10.1016/s1097-2765(03)00428-314636568)
    • Contributed Indexing:
      Keywords: FMR1-related disorders (FMR1 disorders); Double-strand break repair; Fragile X-related disorders; Gap-filling model; Repeat expansion disease
    • الرقم المعرف:
      EC 2.7.7.7 (DNA-Directed DNA Polymerase)
      EC 2.7.7.- (DNA Polymerase theta)
      0 (Rad52 DNA Repair and Recombination Protein)
      EC 3.6.4.- (DNA Helicases)
      0 (Rad52 protein, mouse)
      EC 3.6.4.- (Rad54l protein, mouse)
      0 (Nuclear Proteins)
      0 (DNA-Binding Proteins)
    • الموضوع:
      Date Created: 20250211 Date Completed: 20250211 Latest Revision: 20250218
    • الموضوع:
      20250218
    • الرقم المعرف:
      PMC11814403
    • الرقم المعرف:
      10.1038/s41598-025-87541-3
    • الرقم المعرف:
      39934227