Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Rapid detection of carbapenem-resistant Escherichia coli and carbapenem-resistant Klebsiella pneumoniae in positive blood cultures via MALDI-TOF MS and tree-based machine learning models.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100966981 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2180 (Electronic) Linking ISSN: 14712180 NLM ISO Abbreviation: BMC Microbiol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2001-
    • الموضوع:
    • نبذة مختصرة :
      Background: Bloodstream infection (BSI) is a systemic infection that predisposes individuals to sepsis and multiple organ dysfunction syndrome. Early identification of infectious agents and determination of drug-resistant phenotypes can help patients with BSI receive timely, effective, and targeted treatment and improve their survival. This study was based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), eXtreme Gradient Boosting (XGBoost), and Extremely Randomized Trees (ERT) models were constructed to classify carbapenem-resistant Escherichia coli (CREC) and carbapenem-resistant Klebsiella pneumoniae (CRKP). Bacterial species were identified by MALDI-TOF MS in positive blood cultures isolated via the serum isolation gel method, and E. coli and K. pneumoniae in positive blood cultures were collected and placed into machine learning models to predict susceptibility to carbapenems. The aim of this study was to provide rapid detection of CREC and CRKP in blood cultures, to shorten the turnaround time for laboratory reporting, and to provide a basis for early clinical intervention and rational use of antibiotics.
      Results: The collected MALDI-TOF MS data of 640 E. coli and 444 K. pneumoniae were analysed by machine learning algorithms. The area under the receiver operating characteristic curve (AUROC) for the diagnosis of E. coli susceptibility to carbapenems by the DT, RF, GBM, XGBoost, and ERT models were 0.95, 1.00, 0.99, 0.99, and 1.00, respectively, and the accuracy in predicting 149 E. coli-positive blood cultures were 0.89, 0.92, 0.90, 0.92, and 0.86, respectively. The AUROC for the diagnosis of K. pneumoniae susceptibility to carbapenems by the DT, RF, GBM, XGBoost, and ERT models were 0.78, 0.95, 0.93, 0.90, and 0.95, respectively, and the accuracy in predicting 127 K. pneumoniae-positive blood cultures were 0.76, 0.86, 0.81, 0.80, and 0.76, respectively.
      Conclusions: Machine learning models constructed by MALDI-TOF MS were able to directly predict the susceptibility of E. coli and K. pneumoniae in positive blood cultures to carbapenems. This rapid identification of CREC and CRKP reduces detection time and contributes to early warning and response to potential antibiotic resistance problems in the clinic.
      Clinical Trial Number: Not applicable.
      Competing Interests: Declarations. Ethical approval: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
      (© 2025. The Author(s).)
    • References:
      J Biomed Sci. 2023 Apr 17;30(1):25. (PMID: 37069555)
      Antimicrob Agents Chemother. 2019 Jun 24;63(7):. (PMID: 31010862)
      Crit Care Med. 2023 Sep 1;51(9):1261-1263. (PMID: 37589517)
      Lancet. 2020 Jan 18;395(10219):200-211. (PMID: 31954465)
      BMC Microbiol. 2017 May 25;17(1):128. (PMID: 28545528)
      Int J Antimicrob Agents. 2023 Dec;62(6):106994. (PMID: 37802231)
      Clin Microbiol Rev. 2013 Jan;26(1):103-14. (PMID: 23297261)
      Clin Microbiol Infect. 2015 Apr;21(4):323-31. (PMID: 25686695)
      Indian J Med Microbiol. 2023 Nov-Dec;46:100432. (PMID: 37945125)
      Front Microbiol. 2018 Aug 06;9:1744. (PMID: 30127772)
      Nat Mach Intell. 2020 Jan;2(1):56-67. (PMID: 32607472)
      Clin Microbiol Infect. 2020 Feb;26(2):151-157. (PMID: 31712069)
      Eur J Clin Microbiol Infect Dis. 2024 Jun;43(6):1251-1253. (PMID: 38619764)
      Artif Intell Med. 2023 Jan;135:102471. (PMID: 36628785)
      Clin Microbiol Infect. 2013 Jun;19(6):501-9. (PMID: 23473333)
      Pathogens. 2023 Jun 22;12(7):. (PMID: 37513712)
      Crit Care Nurs Clin North Am. 2021 Dec;33(4):407-418. (PMID: 34742497)
      J Emerg Med. 2017 Oct;53(4):588-595. (PMID: 28916120)
      Vaccines (Basel). 2022 Nov 08;10(11):. (PMID: 36366389)
      Front Microbiol. 2016 May 12;7:697. (PMID: 27242721)
      J Exp Med. 2004 Mar 1;199(5):697-705. (PMID: 14993253)
      Microorganisms. 2024 Sep 03;12(9):. (PMID: 39338498)
      J Clin Microbiol. 2023 Jun 20;61(6):e0175122. (PMID: 37199638)
      Molecules. 2020 Oct 17;25(20):. (PMID: 33080897)
      JAMA Netw Open. 2020 Apr 1;3(4):e202899. (PMID: 32297949)
    • Contributed Indexing:
      Keywords: Escherichia coli; Klebsiella pneumoniae; Blood cultures; MALDI-TOF MS; Machine learning
    • الرقم المعرف:
      0 (Carbapenems)
      0 (Anti-Bacterial Agents)
    • الموضوع:
      Date Created: 20250125 Date Completed: 20250125 Latest Revision: 20250128
    • الموضوع:
      20250128
    • الرقم المعرف:
      PMC11760114
    • الرقم المعرف:
      10.1186/s12866-025-03755-5
    • الرقم المعرف:
      39856543