Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Domestic sewage as a sustainable freshwater substitute for enhanced anaerobic digestion of lignocellulosic biomass.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests. Ethical approval: This study was strictly experimental and did not involve human or animal participants. Institutional ethics approval was not required. Consent to participate: This study does not involve any human subjects. Consent to publish: This study does not involve any human subjects.
      Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum. WH (241.5 mL CH 4 /g VS added ), PWH (200.5 mL CH 4 /g VS added ), and HV (212 mL CH 4 /g VS added ) produced significant amounts of methane in the sewage medium. 16S-rRNA analysis showed that, in sewage, ~ 85% of the microbes were hydrolytic bacteria, and 7% were methanogens. This abundant quantity of hydrolytic microbes from sewage accelerated lignin degradation, achieving 28.32% and 38.34% degradation for WH and HV, respectively, within 14 days. Field emission-scanning electron microscopy images visually confirmed the enhanced substrate degradation in the presence of sewage. The net energy produced from the AD of WH and HV was significant (4664 J/g VS added and 4109 J/g VS added ), but for PWH, it was negative, indicating that using sewage medium may be better than costly pretreatment techniques. This study demonstrated the potential of using sewage as an alternative to freshwater in AD, offering a sustainable solution for freshwater conservation and the possible utilisation of sewage for improved methane production, especially for substrates with lignin that are difficult to degrade.
      (© 2024. The Author(s).)
    • References:
      Hu, Y., Zhou, Z. & Shen, C. Microbial community acclimation during anaerobic digestion of high-oil food waste. Sci. Rep. 14, 25364. https://doi.org/10.1038/s41598-024-77136-9 (2024). (PMID: 10.1038/s41598-024-77136-93945573711511842)
      Ahammad, S. Z. & Sreekrishnan, T. R. Biogas: An evolutionary perspective in the indian context. In Green Fuels Technology: Biofuels (eds Soccol, C. R. et al.) 431–443 (Springer International Publishing, Cham, 2016). https://doi.org/10.1007/978-3-319-30205-8_17 . (PMID: 10.1007/978-3-319-30205-8_17)
      Singh, P. & Kalamdhad, A. S. Unravelling barriers associated with dissemination of large-scale biogas plant with analytical hierarchical process and fuzzy analytical hierarchical process approach: Case study of India. Bioresour. Technol. 413, 131543. https://doi.org/10.1016/j.biortech.2024.131543 (2024). (PMID: 10.1016/j.biortech.2024.13154339341427)
      Visvanathan, C. Bioenergy production from organic fraction of municipal solid waste (OFMSW) through dry anaerobic digestion. In Bioenergy and Biofuel from Biowastes and Biomass 71–87 (2022). https://doi.org/10.1061/9780784410899.ch04 .
      Karthikeyan, O. P. & Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Biotechnol. 12, 257–284. https://doi.org/10.1007/s11157-012-9304-9 (2013). (PMID: 10.1007/s11157-012-9304-9)
      Kim, G.-B. et al. Effects of solids concentration and thermal pretreatment on continuous digestion of undigested dewatered sludge. Renew. Energy 231, 120894. https://doi.org/10.1016/j.renene.2024.120894 (2024). (PMID: 10.1016/j.renene.2024.120894)
      Batool, K., Zhao, Z.-Y., Nureen, N. & Irfan, M. Assessing and prioritizing biogas barriers to alleviate energy poverty in Pakistan: an integrated AHP and G-TOPSIS model. Environ. Sci. Pollut. Res. 30, 94669–94693. https://doi.org/10.1007/s11356-023-28767-4 (2023). (PMID: 10.1007/s11356-023-28767-4)
      Fagbohungbe, M. O. et al. High solid anaerobic digestion: Operational challenges and possibilities. Environ. Technol. Innov. 4, 268–284. https://doi.org/10.1016/j.eti.2015.09.003 (2015). (PMID: 10.1016/j.eti.2015.09.003)
      Wardle, J., Dionisi, D. & Smith, J. Investigating the challenges of biogas provision in water limited environments through laboratory scale biodigesters. Int. J. Sustain. Energy 42, 829–844. https://doi.org/10.1080/14786451.2023.2235022 (2023). (PMID: 10.1080/14786451.2023.2235022378146517615168)
      Government of India (GoI). National River Conservation Plan. https://nrcd.nic.in/ (1993).
      Government of India (GoI). National Ganga River Basin Authority (NGRBA). https://nmcg.nic.in/ngrbaread.aspx (2009).
      CPCB. National Inventory of Sewage Treatment Plants. https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg == (2021).
      Haller, W. T. Hydrilla: a new and rapidly spreading aquatic weed problem. Circ Fla Univ Agric Ext Serv (1976).
      Steward, K. K. & Van, T. K. Comparative Studies of Monoecious and Dioecious Hydrilla ( Hydrilla verticillata ) Biotypes. Weed Sci. 35, 204–210. https://doi.org/10.1017/s0043174500079066 (1987). (PMID: 10.1017/s0043174500079066)
      Barua, V. B. & Kalamdhad, A. S. Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth. Bioresour. Technol. 227, 147–154. https://doi.org/10.1016/j.biortech.2016.12.036 (2017). (PMID: 10.1016/j.biortech.2016.12.03628013131)
      Kainthola, J., Kalamdhad, A. S. & Goud, V. V. Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology. Fuel 235, 92–99. https://doi.org/10.1016/j.fuel.2018.07.094 (2019). (PMID: 10.1016/j.fuel.2018.07.094)
      Karouach, F. et al. Valorization of water hyacinth to biomethane and biofertilizer through anaerobic digestion technology. Fuel 358, 130008. https://doi.org/10.1016/j.fuel.2023.130008 (2024). (PMID: 10.1016/j.fuel.2023.130008)
      Klomjek, P. & Sarin, C. Treatment efficiency and biogas production from anaerobic co-digestion of rice straw and wastewater. Environ. Eng. Manag. J. (EEMJ) 21, 63–74. https://doi.org/10.30638/eemj.2022.006 (2022). (PMID: 10.30638/eemj.2022.006)
      De Muth, J. E. Tests to evaluate potential outliers. In Practical Statistics for Pharmaceutical Analysis: With Minitab Applications (ed. De Muth, J. E.) 197–210 (Springer International Publishing, Cham, 2019). https://doi.org/10.1007/978-3-030-33989-0_8 . (PMID: 10.1007/978-3-030-33989-0_8)
      Angelidaki, I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934. https://doi.org/10.2166/wst.2009.040 (2009). (PMID: 10.2166/wst.2009.04019273891)
      APHA. Standard Methods for the Examination of Water and Wastewater. (American Public Health Association (APHA), 2005).
      DiLallo, R. & Albertson, O. E. Volatile acids by direct titration. J. Water Pollut. Control Fed. 33, 356–365 (1961).
      Sluiter, A. et al. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). https://www.nrel.gov/docs/gen/fy13/42618.pdf (2012).
      Updegraff, D. M. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32, 420–424. https://doi.org/10.1016/S0003-2697(69)80009-6 (1969). (PMID: 10.1016/S0003-2697(69)80009-65361396)
      Passos, F., Solé, M., García, J. & Ferrer, I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energy 108, 168–175. https://doi.org/10.1016/j.apenergy.2013.02.042 (2013). (PMID: 10.1016/j.apenergy.2013.02.042)
      Pellera, F.-M. & Gidarakos, E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 71, 689–703. https://doi.org/10.1016/j.wasman.2017.04.038 (2018). (PMID: 10.1016/j.wasman.2017.04.03828456458)
      Kristensen, P. G., Jensen, J. K., Nielsen, M. & Illerup, J. B. Emission factors for gas fired CHP units< 25 MW. IGRC, November (2004).
      Li, X. et al. A comprehensive review of the strategies to improve anaerobic digestion: Their mechanism and digestion performance. Methane 3, 227–256. https://doi.org/10.3390/methane3020014 (2024). (PMID: 10.3390/methane3020014)
      Guo, J. et al. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Fact. 14, 33. https://doi.org/10.1186/s12934-015-0218-4 (2015). (PMID: 10.1186/s12934-015-0218-4258803144381419)
      Klimek, D., Herold, M. & Calusinska, M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes. BMC Genomics 25, 523. https://doi.org/10.1186/s12864-024-10413-z (2024). (PMID: 10.1186/s12864-024-10413-z3880274111131199)
      Lv, Z. et al. Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics. Environ. Sci. Pollut. Res. 26, 13275–13285. https://doi.org/10.1007/s11356-019-04703-3 (2019). (PMID: 10.1007/s11356-019-04703-3)
      Ariesyady, H. D., Ito, T. & Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 41, 1554–1568. https://doi.org/10.1016/j.watres.2006.12.036 (2007). (PMID: 10.1016/j.watres.2006.12.03617291558)
      Nelson, M. C., Morrison, M. & Yu, Z. A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour. Technol. 102, 3730–3739. https://doi.org/10.1016/j.biortech.2010.11.119 (2011). (PMID: 10.1016/j.biortech.2010.11.11921194932)
      Djemai, K., Drancourt, M. & Tidjani Alou, M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. Microb. Ecol. 83, 536–554. https://doi.org/10.1007/s00248-021-01796-7 (2022). (PMID: 10.1007/s00248-021-01796-734169332)
      Barua, V. B. & Kalamdhad, A. S. Biochemical methane potential test of untreated and hot air oven pretreated water hyacinth: A comparative study. J. Clean. Prod. 166, 273–284. https://doi.org/10.1016/j.jclepro.2017.07.231 (2017). (PMID: 10.1016/j.jclepro.2017.07.231)
      Sathyan, A., Koley, S., Khwairakpam, M. & Kalamdhad, A. S. Effect of thermal pretreatments on biogas production and methane yield from anaerobic digestion of aquatic weed biomass Hydrilla verticillata. Biomass Convers. Biorefin. 13, 16273–16284. https://doi.org/10.1007/s13399-023-04890-7 (2023). (PMID: 10.1007/s13399-023-04890-7)
      Dhamodharan, K., Kumar, V. & Kalamdhad, A. S. Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresour. Technol. 180, 237–241. https://doi.org/10.1016/j.biortech.2014.12.066 (2015). (PMID: 10.1016/j.biortech.2014.12.06625616237)
      TG, I., Haq, I. & Kalamdhad, A. S. Factors affecting anaerobic digestion for biogas production: a review. in (eds. Hussain, C. & Hait, S. B. T.-A. O. W. M.) 223–233 (Elsevier, 2022). https://doi.org/10.1016/B978-0-323-85792-5.00020-4 .
      Saini, R. et al. Trends in lignin biotransformations for bio-based products and energy applications. Bioenergy Res. 16, 88–104. https://doi.org/10.1007/s12155-022-10434-0 (2023). (PMID: 10.1007/s12155-022-10434-0)
    • Contributed Indexing:
      Keywords: Hydrilla verticillata; Biochemical methane potential; Biogas; Domestic wastewater; Lignin degradation; Water hyacinth
    • الرقم المعرف:
      0 (Sewage)
      9005-53-2 (Lignin)
      OP0UW79H66 (Methane)
      11132-73-3 (lignocellulose)
    • الموضوع:
      Date Created: 20241231 Date Completed: 20241231 Latest Revision: 20250325
    • الموضوع:
      20250327
    • الرقم المعرف:
      PMC11685457
    • الرقم المعرف:
      10.1038/s41598-024-83546-6
    • الرقم المعرف:
      39738640