References: Hu, Y., Zhou, Z. & Shen, C. Microbial community acclimation during anaerobic digestion of high-oil food waste. Sci. Rep. 14, 25364. https://doi.org/10.1038/s41598-024-77136-9 (2024). (PMID: 10.1038/s41598-024-77136-93945573711511842)
Ahammad, S. Z. & Sreekrishnan, T. R. Biogas: An evolutionary perspective in the indian context. In Green Fuels Technology: Biofuels (eds Soccol, C. R. et al.) 431–443 (Springer International Publishing, Cham, 2016). https://doi.org/10.1007/978-3-319-30205-8_17 . (PMID: 10.1007/978-3-319-30205-8_17)
Singh, P. & Kalamdhad, A. S. Unravelling barriers associated with dissemination of large-scale biogas plant with analytical hierarchical process and fuzzy analytical hierarchical process approach: Case study of India. Bioresour. Technol. 413, 131543. https://doi.org/10.1016/j.biortech.2024.131543 (2024). (PMID: 10.1016/j.biortech.2024.13154339341427)
Visvanathan, C. Bioenergy production from organic fraction of municipal solid waste (OFMSW) through dry anaerobic digestion. In Bioenergy and Biofuel from Biowastes and Biomass 71–87 (2022). https://doi.org/10.1061/9780784410899.ch04 .
Karthikeyan, O. P. & Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Biotechnol. 12, 257–284. https://doi.org/10.1007/s11157-012-9304-9 (2013). (PMID: 10.1007/s11157-012-9304-9)
Kim, G.-B. et al. Effects of solids concentration and thermal pretreatment on continuous digestion of undigested dewatered sludge. Renew. Energy 231, 120894. https://doi.org/10.1016/j.renene.2024.120894 (2024). (PMID: 10.1016/j.renene.2024.120894)
Batool, K., Zhao, Z.-Y., Nureen, N. & Irfan, M. Assessing and prioritizing biogas barriers to alleviate energy poverty in Pakistan: an integrated AHP and G-TOPSIS model. Environ. Sci. Pollut. Res. 30, 94669–94693. https://doi.org/10.1007/s11356-023-28767-4 (2023). (PMID: 10.1007/s11356-023-28767-4)
Fagbohungbe, M. O. et al. High solid anaerobic digestion: Operational challenges and possibilities. Environ. Technol. Innov. 4, 268–284. https://doi.org/10.1016/j.eti.2015.09.003 (2015). (PMID: 10.1016/j.eti.2015.09.003)
Wardle, J., Dionisi, D. & Smith, J. Investigating the challenges of biogas provision in water limited environments through laboratory scale biodigesters. Int. J. Sustain. Energy 42, 829–844. https://doi.org/10.1080/14786451.2023.2235022 (2023). (PMID: 10.1080/14786451.2023.2235022378146517615168)
Government of India (GoI). National River Conservation Plan. https://nrcd.nic.in/ (1993).
Government of India (GoI). National Ganga River Basin Authority (NGRBA). https://nmcg.nic.in/ngrbaread.aspx (2009).
CPCB. National Inventory of Sewage Treatment Plants. https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg == (2021).
Haller, W. T. Hydrilla: a new and rapidly spreading aquatic weed problem. Circ Fla Univ Agric Ext Serv (1976).
Steward, K. K. & Van, T. K. Comparative Studies of Monoecious and Dioecious Hydrilla ( Hydrilla verticillata ) Biotypes. Weed Sci. 35, 204–210. https://doi.org/10.1017/s0043174500079066 (1987). (PMID: 10.1017/s0043174500079066)
Barua, V. B. & Kalamdhad, A. S. Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth. Bioresour. Technol. 227, 147–154. https://doi.org/10.1016/j.biortech.2016.12.036 (2017). (PMID: 10.1016/j.biortech.2016.12.03628013131)
Kainthola, J., Kalamdhad, A. S. & Goud, V. V. Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology. Fuel 235, 92–99. https://doi.org/10.1016/j.fuel.2018.07.094 (2019). (PMID: 10.1016/j.fuel.2018.07.094)
Karouach, F. et al. Valorization of water hyacinth to biomethane and biofertilizer through anaerobic digestion technology. Fuel 358, 130008. https://doi.org/10.1016/j.fuel.2023.130008 (2024). (PMID: 10.1016/j.fuel.2023.130008)
Klomjek, P. & Sarin, C. Treatment efficiency and biogas production from anaerobic co-digestion of rice straw and wastewater. Environ. Eng. Manag. J. (EEMJ) 21, 63–74. https://doi.org/10.30638/eemj.2022.006 (2022). (PMID: 10.30638/eemj.2022.006)
De Muth, J. E. Tests to evaluate potential outliers. In Practical Statistics for Pharmaceutical Analysis: With Minitab Applications (ed. De Muth, J. E.) 197–210 (Springer International Publishing, Cham, 2019). https://doi.org/10.1007/978-3-030-33989-0_8 . (PMID: 10.1007/978-3-030-33989-0_8)
Angelidaki, I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934. https://doi.org/10.2166/wst.2009.040 (2009). (PMID: 10.2166/wst.2009.04019273891)
APHA. Standard Methods for the Examination of Water and Wastewater. (American Public Health Association (APHA), 2005).
DiLallo, R. & Albertson, O. E. Volatile acids by direct titration. J. Water Pollut. Control Fed. 33, 356–365 (1961).
Sluiter, A. et al. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). https://www.nrel.gov/docs/gen/fy13/42618.pdf (2012).
Updegraff, D. M. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32, 420–424. https://doi.org/10.1016/S0003-2697(69)80009-6 (1969). (PMID: 10.1016/S0003-2697(69)80009-65361396)
Passos, F., Solé, M., García, J. & Ferrer, I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energy 108, 168–175. https://doi.org/10.1016/j.apenergy.2013.02.042 (2013). (PMID: 10.1016/j.apenergy.2013.02.042)
Pellera, F.-M. & Gidarakos, E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 71, 689–703. https://doi.org/10.1016/j.wasman.2017.04.038 (2018). (PMID: 10.1016/j.wasman.2017.04.03828456458)
Kristensen, P. G., Jensen, J. K., Nielsen, M. & Illerup, J. B. Emission factors for gas fired CHP units< 25 MW. IGRC, November (2004).
Li, X. et al. A comprehensive review of the strategies to improve anaerobic digestion: Their mechanism and digestion performance. Methane 3, 227–256. https://doi.org/10.3390/methane3020014 (2024). (PMID: 10.3390/methane3020014)
Guo, J. et al. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Fact. 14, 33. https://doi.org/10.1186/s12934-015-0218-4 (2015). (PMID: 10.1186/s12934-015-0218-4258803144381419)
Klimek, D., Herold, M. & Calusinska, M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes. BMC Genomics 25, 523. https://doi.org/10.1186/s12864-024-10413-z (2024). (PMID: 10.1186/s12864-024-10413-z3880274111131199)
Lv, Z. et al. Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics. Environ. Sci. Pollut. Res. 26, 13275–13285. https://doi.org/10.1007/s11356-019-04703-3 (2019). (PMID: 10.1007/s11356-019-04703-3)
Ariesyady, H. D., Ito, T. & Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 41, 1554–1568. https://doi.org/10.1016/j.watres.2006.12.036 (2007). (PMID: 10.1016/j.watres.2006.12.03617291558)
Nelson, M. C., Morrison, M. & Yu, Z. A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour. Technol. 102, 3730–3739. https://doi.org/10.1016/j.biortech.2010.11.119 (2011). (PMID: 10.1016/j.biortech.2010.11.11921194932)
Djemai, K., Drancourt, M. & Tidjani Alou, M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. Microb. Ecol. 83, 536–554. https://doi.org/10.1007/s00248-021-01796-7 (2022). (PMID: 10.1007/s00248-021-01796-734169332)
Barua, V. B. & Kalamdhad, A. S. Biochemical methane potential test of untreated and hot air oven pretreated water hyacinth: A comparative study. J. Clean. Prod. 166, 273–284. https://doi.org/10.1016/j.jclepro.2017.07.231 (2017). (PMID: 10.1016/j.jclepro.2017.07.231)
Sathyan, A., Koley, S., Khwairakpam, M. & Kalamdhad, A. S. Effect of thermal pretreatments on biogas production and methane yield from anaerobic digestion of aquatic weed biomass Hydrilla verticillata. Biomass Convers. Biorefin. 13, 16273–16284. https://doi.org/10.1007/s13399-023-04890-7 (2023). (PMID: 10.1007/s13399-023-04890-7)
Dhamodharan, K., Kumar, V. & Kalamdhad, A. S. Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresour. Technol. 180, 237–241. https://doi.org/10.1016/j.biortech.2014.12.066 (2015). (PMID: 10.1016/j.biortech.2014.12.06625616237)
TG, I., Haq, I. & Kalamdhad, A. S. Factors affecting anaerobic digestion for biogas production: a review. in (eds. Hussain, C. & Hait, S. B. T.-A. O. W. M.) 223–233 (Elsevier, 2022). https://doi.org/10.1016/B978-0-323-85792-5.00020-4 .
Saini, R. et al. Trends in lignin biotransformations for bio-based products and energy applications. Bioenergy Res. 16, 88–104. https://doi.org/10.1007/s12155-022-10434-0 (2023). (PMID: 10.1007/s12155-022-10434-0)
No Comments.