Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Two highly selected mutations in the tandemly duplicated CYP6P4a and CYP6P4b genes drive pyrethroid resistance in Anopheles funestus in West Africa.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101190720 Publication Model: Electronic Cited Medium: Internet ISSN: 1741-7007 (Electronic) Linking ISSN: 17417007 NLM ISO Abbreviation: BMC Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London] : BioMed Central, c2003-
    • الموضوع:
    • نبذة مختصرة :
      Background: Gaining a comprehensive understanding of the genetic mechanisms underlying insecticide resistance in malaria vectors is crucial for optimising the effectiveness of insecticide-based vector control methods and developing diagnostic tools for resistance management. Considering the heterogeneity of metabolic resistance in major malaria vectors, the implementation of tailored resistance management strategies is essential for successful vector control. Here, we provide evidence demonstrating that two highly selected mutations in CYP6P4a and CYP6P4b are driving pyrethroid insecticide resistance in the major malaria vector Anopheles funestus, in West Africa.
      Results: Continent-wide polymorphism survey revealed escalated signatures of directional selection of both genes between 2014 and 2021. In vitro insecticide metabolism assays with recombinant enzymes from both genes showed that mutant alleles under selection exhibit higher metabolic efficiency than their wild-type counterparts. Using the GAL4-UAS expression system, transgenic Drosophila flies overexpressing mutant alleles exhibited increased resistance to pyrethroids. These findings were consistent with in silico predictions which highlighted changes in enzyme active site architecture that enhance the affinity of mutant alleles for type I and II pyrethroids. Furthermore, we designed two DNA-based assays for the detection of CYP6P4a-M220I and CYP6P4b-D284E mutations, showing their current confinement to West Africa. Genotype/phenotype correlation analyses revealed that these markers are strongly associated with resistance to types I and II pyrethroids and combine to drastically reduce killing effects of pyrethroid bed nets.
      Conclusions: Overall, this study demonstrated that CYP6P4a and CYP6P4b contribute to pyrethroid resistance in An. funestus and provided two additional insecticide resistance molecular diagnostic tools that would contribute to monitoring and better management of resistance.
      Competing Interests: Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      WHO. World malaria report. 2023.
      WHO. WHO guidelines for malaria. 2023.
      Killeen GF, Ranson H. Insecticide-resistant malaria vectors must be tackled. Lancet. 2018;391(10130):1551–2. https://doi.org/10.1016/S0140-6736(18)30844-4 . (PMID: 10.1016/S0140-6736(18)30844-429655495)
      Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. 2015;.
      WHO. World malaria report 2022. 2022.
      Menze BD, Tchouakui M, Mugenzi LMJ, Tchapga W, Tchoupo M, Wondji MJ, Chiumia M, Mzilahowa T, Wondji CS. Marked aggravation of pyrethroid resistance in major malaria vectors in Malawi between 2014 and 2021 is partly linked with increased expression of P450 alleles. BMC Infect Dis. 2022;22(1):1–13. https://doi.org/10.1186/s12879-022-07596-9 . (PMID: 10.1186/s12879-022-07596-9)
      Riveron JM, Huijben S, Tchapga W, Tchouakui M, Wondji MJ, Tchoupo M, Irving H, Cuamba N, Maquina M, Paaijmans K, Wondji CS. Escalation of pyrethroid resistance in the malaria vector Anopheles funestus induces a loss of efficacy of piperonyl butoxide – based insecticide-treated nets in Mozambique. J Infect Dis. 2019;220:467–75. (PMID: 10.1093/infdis/jiz139309238196603977)
      Riveron JM, Chiumia M, Menze BD, Barnes KG, Irving H, Ibrahim SS, Weedall GD, Mzilahowa T, Wondji CS. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malar J. 2015;14(1):1–9. (PMID: 10.1186/s12936-015-0877-y)
      Matowo NS, Martin J, Kulkarni MA, Mosha JF, Lukole E, Isaya G, Shirima B, Kaaya R, Moyes C, Hancock PA, Rowland M, Manjurano A, Mosha FW. An increasing role of pyrethroid - resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Sci Rep. 2021;1–13. https://doi.org/10.1038/s41598-021-92741-8 .
      Pinda PG, Eichenberger C, Ngowo HS, Msaky DS, Abbasi S, Kihonda J, Bwanaly H, Okumu FO. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania. Malar J. 2020;19(1):1–11. https://doi.org/10.1186/s12936-020-03483-3 . (PMID: 10.1186/s12936-020-03483-3)
      Mulamba C, Riveron JM, Ibrahim SS, Irving H, Barnes KG, Mukwaya LG, Birungi J, Wondji CS. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms. 2014;9(10):1–10.
      Menze BD, Wondji MJ, Tchapga W, Tchoupo M, Riveron JM, Wondji CS. Bionomics and insecticides resistance profiling of malaria vectors at a selected site for experimental hut trials in central Cameroon. Malar J. 2018;1–10. https://doi.org/10.1186/s12936-018-2467-2 .
      Sangba MLO, Deketramete T, Wango SP, Kazanji M, Akogbeto M, Ndiath MO. Insecticide resistance status of the Anopheles funestus population in Central African Republic: a challenge in the war. Parasit Vectors. 2016;9(1):1–8. https://doi.org/10.1186/s13071-016-1510-9 . (PMID: 10.1186/s13071-016-1510-9)
      Riveron JM, Osae M, Egyir-yawson A, Irving H, Ibrahim SS, Wondji CS. Multiple insecticide resistance in the major malaria vector Anopheles funestus in southern Ghana : implications for malaria control. Parasit Vectors. 2016;1–9. https://doi.org/10.1186/s13071-016-1787-8 .
      Mugenzi LMJ, Akosah-Brempong G, Tchouakui M, Menze BD, Tekoh TA, Tchoupo M, Nkemngo FN, Wondji MJ, Nwaefuna EK, Osae M, Wondji CS. Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana. BMC Infect Dis. 2022;22(1):1–15. https://doi.org/10.1186/s12879-022-07795-4 .
      Djouaka RJ, et al. Evidence of a multiple insecticide resistance in the malaria vector Anopheles funestus in South West Nigeria. Malar J. 2016;15:565. https://doi.org/10.1186/s12936-016-1615-9 . (PMID: 10.1186/s12936-016-1615-9278760395120565)
      Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, et al. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics. 2024;iyae181. https://doi.org/10.1093/genetics/iyae181 .
      Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N, et al. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci Transl Med. 2019;11(484):1–13. https://doi.org/10.1126/scitranslmed.aat7386 . (PMID: 10.1126/scitranslmed.aat7386)
      Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, Hearn J, Weedall GD, Riveron JM, Wondji CS. Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus. Nat Commun. 2019;10(1):1–11. https://doi.org/10.1038/s41467-019-12686-5 . (PMID: 10.1038/s41467-019-12686-5)
      Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000 Jun 25;14(2):181–9. https://resjournals.onlinelibrary.wiley.com/doi/https://doi.org/10.1046/j.1365-2915.2000.00234.x .
      Hemingway J. The way forward for vector control. Science (80- ). 2017;358(6366):998–9. (PMID: 10.1126/science.aaj1644)
      WHO. Global plan for insecticide management. 2012;.
      Riveron JM, Tchouakui M, Mugenzi L, Menze BD, Chiang MC, Wondji CS. Insecticide Resistance in Malaria Vectors: An Update at a Global Scale. Towards Malaria Elimination - A Leap Forward. InTech; 2018. https://doi.org/10.5772/intechopen.78375 .
      Hemingway R. nsecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:79–102. https://doi.org/10.1146/annurev.ento.45.1.371 . (PMID: 10.1146/annurev.ento.45.1.371)
      Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7(2):179–84. (PMID: 10.1046/j.1365-2583.1998.72062.x9535162)
      Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007;52:231–53. (PMID: 10.1146/annurev.ento.51.110104.15110416925478)
      Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, Ismail HM, Hemingway J, Ranson H, Albert A, Wondji CS. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2014;15(2):R27. http://genomebiology.biomedcentral.com/articles/https://doi.org/10.1186/gb-2014-15-2-r27 .
      Ibrahim SS, Riveron JM, Bibby J, Irving H, Yunta C, Paine MJI, Wondji CS. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector. PLoS Genet. 2015;11(10):1–25. e1005618. https://doi.org/10.1371/journal.pgen.1005618 .
      Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. Insect Biochem Mol Biol. 2021;138(July): 103647. https://doi.org/10.1016/j.ibmb.2021.103647 . (PMID: 10.1016/j.ibmb.2021.10364734530119)
      Barnes KG, Weedall GD, Ndula M, Irving H, Mzihalowa T, Hemingway J, Wondji CS. Genomic footprints of selective sweeps from metabolic resistance to pyrethroids in African malaria vectors are driven by scale up of insecticide-based vector control. Copenhaver GP, editor. PLOS Genet. 2017 Feb 2;13(2):e1006539. https://dx.plos.org/https://doi.org/10.1371/journal.pgen.1006539 .
      Barnes KG, Irving H, Chiumia M, Mzilahowa T, Coleman M, Hemingway J, Wondji CS. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus. Proc Natl Acad Sci. 2017 Jan 10;114(2):286–91. https://pnas.org/doi/full/https://doi.org/10.1073/pnas.1615458114 .
      Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, Hearn J, Weedall GD, Riveron JM, Cho-Ngwa F, Wondji CS. A 6.5-kb intergenic structural variation enhances P450-mediated resistance to pyrethroids in malaria vectors lowering bed net efficacy. Mol Ecol. 2020;29(22):4395–411. (PMID: 10.1111/mec.1564532974960)
      Wondji CS, Hearn J, Irving H, Wondji MJ, Weedall G. RNAseq-based gene expression profiling of the Anopheles funestus pyrethroid-resistant strain FUMOZ highlights the predominant role of the duplicated CYP6P9a/b cytochrome P450s. G3 Genes Genomes Genet. 2022;12(1):1–13.  https://doi.org/10.1093/g3journal/jkab352 .
      Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hemingway J, Ranson H. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 2009;19(3):452–9. (PMID: 10.1101/gr.087916.108191967252661802)
      Riveron JM, Ibrahim SS, Chanda E, Mzilahowa T, Cuamba N, Irving H, Barnes KG, Ndula M, Wondji CS. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa. BMC Genomics. 2014;15(1):1–19. (PMID: 10.1186/1471-2164-15-817)
      Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, Ishak IH, Wondji CS. Genome-wide transcription and functional analyses reveal heterogeneous molecular mechanisms driving pyrethroids resistance in the major malaria vector Anopheles funestus across Africa. G3 Genes Genomes Genet. 2017;7(6):1819–32. (PMID: 10.1534/g3.117.040147)
      Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJI, Wondji CS. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc Natl Acad Sci U S A. 2013;110(1):252–7. (PMID: 10.1073/pnas.121670511023248325)
      Mugenzi LMJ, Tekoh TA, Ntadoun ST, Chi AD, Gadji M, Menze BD, et al. Association of a rapidly selected 4.3kb transposon-containing structural variation with a P450-based resistance to pyrethroids in the African malaria vector Anopheles funestus. PLoS Genet. 2024;20(7)1–21. https://doi.org/10.1371/journal.pgen.1011344 .
      Weedall GD, Riveron JM, Hearn J, Irving H, Kamdem C, Fouet C, White BJ, Wondji CS. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genet. 2020;16(6):1–29. https://doi.org/10.1371/journal.pgen.1008822 . (PMID: 10.1371/journal.pgen.1008822)
      Njoroge H, van’t Hof A, Oruni A, Pipini D, Nagi SC, Lynd A, et al. Identification of a rapidly-spreading triple mutant for high-level metabolic insecticide resistance in Anopheles gambiae provides a real-time molecular diagnostic for antimalarial intervention deployment. Mol Ecol. 2022;31(16):4307–18. (PMID: 10.1111/mec.16591357752829424592)
      Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN, Kwiatkowski DP, Weetman D, Donnelly MJ. Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Res. 2019;29(8):1250–61. (PMID: 10.1101/gr.245795.118313459386673711)
      Kusimo MO, Mackenzie-Impoinvil L, Ibrahim SS, Muhammad A, Irving H, Hearn J, Lenhart AE, Wondji CS. Pyrethroid resistance in the New World malaria vector Anopheles albimanus is mediated by cytochrome P450 CYP6P5. Pestic Biochem Physiol. 2022;183(February): 105061. https://doi.org/10.1016/j.pestbp.2022.105061 . (PMID: 10.1016/j.pestbp.2022.105061354300649125164)
      Chandor-Proust A, Bibby J, Régent-Kloeckner M, Roux J, Guittard-Crilat E, Poupardin R, Riaz MA, Paine M, Dauphin-Villemant C, Reynaud S, David JP. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural mode. Biochem J. 2013;455(1):75–85. (PMID: 10.1042/BJ2013057723844938)
      Zimmer CT, Garrood WT, Singh KS, Randall E, Lueke B, Gutbrod O, Matthiesen S, Kohler M, Nauen R, Davies TGE, Bass C. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Curr Biol. 2018;28(2):268-274.e5. (PMID: 10.1016/j.cub.2017.11.060293370735788746)
      Shono T, Unai T, Casida J. Metabolism of permethrin isomers in American cockroach adults, house fly adults, and cabbage looper larvae. Pesticide Biochem Physiol. 1978;106:96–106. (PMID: 10.1016/0048-3575(78)90070-6)
      Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian LY, Müller P, Nikou D, Steven A, Hemingway J, Sutcliffe MJ, Paine MJI. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol. 2011;41(7):492–502. https://doi.org/10.1016/j.ibmb.2011.02.003 . (PMID: 10.1016/j.ibmb.2011.02.00321324359)
      Roussel F, Khan KK, Halpert JR. The importance of SRS-1 residues in catalytic specificity of human cytochrome P450 3A4. Arch Biochem Biophys. 2000;374(2):269–78. https://doi.org/10.1006/abbi.1999.1599 . (PMID: 10.1006/abbi.1999.159910666307)
      Shi Y, Reilly AOO, Sun S, Qu Q, Yang Y, Wu Y. Roles of the variable P450 substrate recognition sites SRS1 and SRS6 in esfenvalerate metabolism by CYP6AE subfamily enzymes in Helicoverpa armigera. Insect Biochem Mol Biol. 2020;127(April): 103486. https://doi.org/10.1016/j.ibmb.2020.103486 . (PMID: 10.1016/j.ibmb.2020.10348633069773)
      Ibrahim SS, Riveron JM, Stott R, Irving H, Wondji CS. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis. Insect Biochem Mol Biol [Internet]. 2016;68:23–32. Available from: https://doi.org/10.1016/j.ibmb.2015.10.015 .
      Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H, Wondji CS. The cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Sci Rep. ;2016(6):1–13. https://doi.org/10.1038/srep24707 . (PMID: 10.1038/srep24707)
      Schuler MA, Berenbaum MR. Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J Chem Ecol. 2013;39(9):1232–45. (PMID: 10.1007/s10886-013-0335-724036972)
      Zhang H, Myshkin E, Waskell L. Role of cytochrome b5 in catalysis by cytochrome P450 2B4. Biochem Biophys Res Commun. 2005;338(1):499–506. (PMID: 10.1016/j.bbrc.2005.09.02216182240)
      Amichot M, Tarés S, Brun-Barale A, Arthaud L, Bride JM, Bergé JB. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur J Biochem. 2004;271(7):1250–7. (PMID: 10.1111/j.1432-1033.2004.04025.x15030474)
      Helvecio E, Romão TP, de Carvalho-Leandro D, de Oliveira IF, Cavalcanti AEHD, Reimer L, de Paiva CM, de Oliveira APS, Paiva PMG, Napoleão TH, Wallau GL, de Melo Neto OP, Melo-Santos MAV, Ayres CFJ. Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pestic Biochem Physiol. ;2020(165):104464. https://doi.org/10.1016/j.pestbp.2019.10.002 . (PMID: 10.1016/j.pestbp.2019.10.002)
      Nolden M, Paine MJI, Nauen R. Sequential phase I metabolism of pyrethroids by duplicated CYP6P9 variants results in the loss of the terminal benzene moiety and determines resistance in the malaria mosquito Anopheles funestus. Insect Biochem Mol Biol. 2022;1(148):103813. (PMID: 10.1016/j.ibmb.2022.103813)
      Paine MJI, Mclaughlin LA, Flanagan JU, Kemp CA, Sutcliffe MJ, Roberts GCK, Wolf CR. Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J Biol Chem. 2003;278(6):4021–7. https://doi.org/10.1074/jbc.M209519200 . (PMID: 10.1074/jbc.M20951920012446689)
      Kouamo MFM, Ibrahim SS, Hearn J, Riveron JM, Kusimo M, Tchouakui M, Ebai T, Tchapga W, Wondji MJ, Irving H, Boyom FF, Wondji CS. Genome-wide transcriptional analysis and functional validation linked a cluster of epsilon glutathione S-transferases with insecticide resistance in the major malaria vector Anopheles funestus across Africa. 2021; Genes 2021, 12, 561. https://doi.org/10.3390/genes12040561 .
      Mugenzi LMJ, Tekoh TA, Id SSI, Id AM, Kouamo M, Wondji MJ, Irving H, Id JH, Id CSW. The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus. 2023;1–29.: https://doi.org/10.1371/journal.pgen.1010678 .
      Atoyebi SM, Tchigossou GM, Akoton R, Riveron JM, Irving H, Weedall G, Tossou E, Djegbe I, Oyewole IO, Bakare AA, Wondji CS, Djouaka R. Investigating the molecular basis of multiple insecticide resistance in a major malaria vector Anopheles funestus (sensu stricto) from Akaka-Remo, Ogun State. Nigeria Parasites and Vectors. 2020;13(1):1–14. https://doi.org/10.1186/s13071-020-04296-8 . (PMID: 10.1186/s13071-020-04296-8)
      Fonkou BNS, Tchouakui M, Menze BD, Mugenzi LMJ, Fofie D, Nguiffo-Nguete D, Nkengazong L, Tombi J, Wondji CS. Entomological longitudinal surveys in two contrasted eco-climatic settings in Cameroon reveal a high malaria transmission from Anopheles funestus associated with GSTe2 metabolic resistance. BMC Infect Dis. 2023 Oct 28;23(1):738. https://bmcinfectdis.biomedcentral.com/articles/ https://doi.org/10.1186/s12879-023-08698-8 .
      Tchouakui M, Mugenzi LMJ, Wondji MJ, Tchoupo M, Njiokou F, Wondji CS. A 6.5kb intergenic structural variation exacerbates the fitness cost of P450-based metabolic resistance in the major African malaria vector Anopheles funestus. Genes (Basel). 2022;13(4):1–14. (PMID: 10.3390/genes13040626)
      Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66(6):804–11. https://doi.org/10.4269/ajtmh.2002.66.804 . (PMID: 10.4269/ajtmh.2002.66.80412224596)
      Hunt RH, Brooke BD, Pillay C, Koekemoer LL, Coetzee M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med Vet Entomol. 2005;19(3):271–5. (PMID: 10.1111/j.1365-2915.2005.00574.x16134975)
      Hall TA. BioEdit: a user friendly biological seque. Nucleid Acids Symposium Series. 1999. p. 95–8.
      Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinforma Appl NOTE. 2009;25(11):1451–2. http://www.ub.edu/dnasp .
      Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–9. https://doi.org/10.1093/molbev/msy096 . (PMID: 10.1093/molbev/msy096297228875967553)
      Clement M, Snell Q, Walke P, Posada D, Crandall K. TCS: estimating gene genealogies. Proc - Int Parallel Distrib Process Symp IPDPS. 2002;2002:184.
      Hearn J, Djoko Tagne CS, Ibrahim SS, Tene-Fossog B, Mugenzi LMJ, Irving H, Riveron JM, Weedall GD, Wondji CS. Multi-omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa. Mol Ecol. 2022;31(13):3642–57. (PMID: 10.1111/mec.16497355467419321817)
      Livak K. Organization and mapping of a sequence on the drosophila melanogaster x and y chromosomes that is transcribed during spermatogenesis. 1984.
      Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8. (PMID: 10.1038/nprot.2008.7318546601)
      Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. https://doi.org/10.1038/s41586-021-03819-2 . (PMID: 10.1038/s41586-021-03819-2342658448371605)
      Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J Biol Chem. 2004;279(37):38091–4. https://doi.org/10.1074/jbc.C400293200 .
      Jorgensen WL, Tirado-rives J. The OPLS potential functions for proteins. energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110(6):1657–66. https://doi.org/10.1021/ja00214a001 .
      Labute P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008;29(10):1693–8. (PMID: 10.1002/jcc.2093318307169)
      Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995 May 1;117(19):5179–97. https://pubs.acs.org/doi/abs/ https://doi.org/10.1021/ja00124a002 .
      Pritchard MP, Ossetian R, Li DN, Henderson CJ, Burchell B, Wolf CR, Friedberg T. A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1. Arch Biochem Biophys. 1997;345(2):342–54. (PMID: 10.1006/abbi.1997.02659308909)
      Sato RYO. The carbon of liver. J Biol Chem. 1964;239(7):2370–8. https://doi.org/10.1016/S0021-9258(20)82244-3 . (PMID: 10.1016/S0021-9258(20)82244-314209971)
      Daborn PJ, Lumb C, Harrop TWR, Blasetti A, Pasricha S, Morin S, Mitchell SN, Donnelly MJ, Müller P, Batterham P. Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. Insect Biochem Mol Biol. 2012;42(12):918–24. https://doi.org/10.1016/j.ibmb.2012.09.003 . (PMID: 10.1016/j.ibmb.2012.09.00323023059)
      WHO. Guidelines for laboratory and field testing of long-lasting insecticidal nets. Geneva: World Health Organization. 2013;102.
    • Contributed Indexing:
      Keywords: Anopheles funestus; Cytochrome P450; GAL4/UAS expression; Heterologous expression; Insecticide metabolism assay; Insecticide resistance
    • الرقم المعرف:
      0 (Pyrethrins)
      0 (Insecticides)
      0 (Insect Proteins)
    • الموضوع:
      Date Created: 20241219 Date Completed: 20241219 Latest Revision: 20241219
    • الموضوع:
      20241219
    • الرقم المعرف:
      10.1186/s12915-024-02081-y
    • الرقم المعرف:
      39696366