Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Molecular characterization and safety properties of multi drug-resistant Escherichia coli O157:H7 bacteriophages.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100966981 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2180 (Electronic) Linking ISSN: 14712180 NLM ISO Abbreviation: BMC Microbiol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2001-
    • الموضوع:
    • نبذة مختصرة :
      The increase in multi drug resistance (MDR) amongst food-borne pathogens such as Escherichia coli O157:H7, coupled with the upsurge of food-borne infections caused by these pathogens is a major public health concern. Lytic phages have been employed as an alternative to antibiotics for use against food-borne pathogens. However, for effective application, phages should be selectively toxic. Therefore, the objective of this study was to characterise lytic E. coli O157:H7 phages isolated from wastewater as possible biocontrol agents and access their genomes for the absence of genes that denotes virulence, resistance, toxins, and lysogeny using whole genome sequencing. E. coli O157:H7 bacteriophages showed clear plaques ranging in size from 1.0 mm to 2.0 mm. Spot test and Efficiency of plating (EOP) analysis demonstrated that isolated phages could infect various environmental E. coli strains. Four phages; vB_EcoM_EP32a, vB_EcoP_EP32b, vB_EcoM_EP57, and vB_EcoM_EP69 demonstrated broad lytic spectra against E. coli O157:H7 strains. Transmission Electron Microscopy (TEM) showed that all phages have tails and were classified as Caudoviricetes. Growth parameters showed an average latent period of 15 ± 3.8 min, with a maximum burst size of 392 PFU/cell. The phages were stable at three distinct temperatures (4 °C, 28 °C, and 37 °C) and at pH values of 3.5, 5.0, 7.0, 9.0, and 11.0. Based on their morphological distinctiveness, three phages were included in the Whole Genome Sequencing (WGS) analysis. WGS results revealed that E. coli O157:H7 phages (vB_EcoM_EP32a, vB_EcoP_EP32b, and vB_EcoM_EP57) were composed of linear double-stranded DNA (dsDNA) with genome sizes 163,906, 156,698, and 130,723 bp and GC contents of 37.61, 37, and 39% respectively. Phages vB_EcoM_EP32a and vB_EcoP_EP32b genomes were classified under the class Caudoviricetes, Straboviridae family, and the new genus "Phapecoctavirus", while vB_EcoM_EP57 was classified under the class Caudoviricetes, Autographiviridae family. Genome analysis revealed no lysogenic (integrase), virulence, or antimicrobial resistance sequences in all three Escherichia phage genomes. The overall results provided evidence that lytic E. coli O157:H7 bacteriophages in this study, are relatively stable, can infect diverse E. coli strains, and does not contain genes responsible for virulence, resistance, toxins, and lysogeny. Thus, they can be considered as biocontrol candidates against MDR pathogenic E. coli O157:H7 strains in the food industry.
      Competing Interests: Declarations. Ethics approval: Ethics approval for the study was obtained from the North-West University Animal Research Ethics Committee (NWU-AnimCareREC) and ethics number NWU-00772-23-A5 was assigned to the study. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. Phage therapy: from biological mechanisms to future directions. Cell. 2023;186(1):17–31. (PMID: 366086529827498)
      Hassan AY, Lin JT, Ricker N, Anany H. The age of phage: friend or foe in the new dawn of therapeutic and biocontrol applications? Pharmaceuticals. 2021;14(3):199. (PMID: 336708367997343)
      Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Bio Medica Atenei Parmensis. 2020;91(Suppl 13).
      Ngene AC, Aguiyi JC, Uzal U, Egbere J, Onyimba IA, Umera AE, et al. Bacteriophages as Bio-control agent against Food-Borne Pathogen E. Coli O157: H7. IOSR J Pharm Biol Sci. 2020;15(2):23–36.
      Oluwarinde BO, Ajose DJ, Abolarinwa TO, Montso PK, Du Preez I, Njom HA, et al. Safety properties of Escherichia coli O157: H7 specific bacteriophages: recent advances for Food Safety. Foods. 2023;12(21):3989. (PMID: 3795910710650914)
      Choo KW, Mao L, Mustapha A. CAM-21, a novel lytic phage with high specificity towards Escherichia coli O157: H7 in food products. Int J Food Microbiol. 2023;386:110026. (PMID: 36444789)
      Lee C, Choi IY, Park DH, Park M-K. Isolation and characterization of a novel Escherichia coli O157: H7-specific phage as a biocontrol agent. J Environ Health Sci Eng. 2020;18(1):189–99. (PMID: 323992317203308)
      Liao Y-T, Sun X, Quintela IA, Bridges DF, Liu F, Zhang Y, et al. Discovery of Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages from non-fecal composts using genomic characterization. Front Microbiol. 2019;10:627. (PMID: 310012166454146)
      Van Twest R, Kropinski AM. Bacteriophage enrichment from water and soil. In: Bacteriophages: methods and protocols, Volume 1: isolation, characterization, and interactions; 2009. pp. 15–21.
      Sambrook J, Russell D. In:. Molecular cloning: a laboratory manual. Vol. 1, 3rd ed. Cold Spring Harbor Laboratory Press, New York, NY, USA; 2001.
      Adams MH. Bacterlophages; 1959.
      Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, et al. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int J Food Microbiol. 2018;275:24–31. (PMID: 29621738)
      Kutter E. Phage host range and efficiency of plating. In: Bacteriophages: methods and protocols, Volume 1: isolation, characterization, and interactions; 2009. pp. 141-9.
      Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019;10:574. (PMID: 309491586437105)
      Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14. (PMID: 20214604)
      Ackermann H-W. Basic phage electron microscopy. Bacteriophages: Methods and protocols, Volume 1: isolation, characterization, and interactions; 2009. pp. 113 – 26.
      Brenner S, Horne R. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959;34:103–10. (PMID: 13804200)
      El-Dougdoug N, Cucic S, Abdelhamid A, Brovko L, Kropinski A, Griffiths M, et al. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol. 2019;293:60–71. (PMID: 30641253)
      Vukotic G, Obradovic M, Novovic K, Di Luca M, Jovcic B, Fira D, et al. Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Front Med. 2020;7:426.
      Zhao F, Sun H, Zhou X, Liu G, Li M, Wang C, et al. Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum. Virus Genes. 2019;55:532–40. (PMID: 31004278)
      Andrews S. FastQC-A quality control application for FastQ files. Babraham Bioinformatics: Babraham, UK; 2010.
      Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. (PMID: 246954044103590)
      Malberg Tetzschner AM, Johnson JR, Johnston BD, Lund O, Scheutz F. In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J Clin Microbiol. 2020;58(10):01269–20. https://doi.org/10.1128/jcm . (PMID: 10.1128/jcm)
      Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother. 2017;72(10):2764–8. (PMID: 290912025890747)
      Sattar S, Bailie M, Yaqoob A, Khanum S, Fatima K, Altaf AURB, et al. Characterization of two novel lytic bacteriophages having lysis potential against MDR avian pathogenic Escherichia coli strains of zoonotic potential. Sci Rep. 2023;13(1):10043. (PMID: 3734002210282059)
      Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics. 2017;33(15):2379–80. (PMID: 28379287)
      Yuan X, Zhang S, Wang J, Li C, Li N, Yu S, et al. Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Res. 2021;293:198274. (PMID: 33359502)
      Hua Y, Chromek M, Frykman A, Jernberg C, Georgieva V, Hansson S, et al. Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence. 2021;12(1):1296–305. (PMID: 339395818096335)
      Perry CM. Antibiotic resistance crisis spurring phage therapy research; 2021.
      Imran A, Shehzadi U, Islam F, Afzaal M, Ali R, Ali YA, et al. Bacteriophages and food safety: an updated overview. Food Sci Nutr. 2023;11(7):3621–30. (PMID: 3745718010345663)
      Poojari K, Akhila D, Raj JM, Santhosh K, Kenjar A, Ashwath P. Biocontrol of Escherichia coli and Salmonella in poultry meat using phage cocktail. Iran J Veterinary Res. 2022;23(3):270.
      Montso PK, Mlambo V, Ateba CN. Characterization of lytic bacteriophages infecting multidrug-resistant shiga toxigenic atypical Escherichia coli O177 strains isolated from cattle feces. Front Public Health. 2019;7:355. (PMID: 320391266988782)
      Nga NTT, Tran TN, Holtappels D, Kim Ngan NL, Hao NP, Vallino M, et al. Phage biocontrol of bacterial leaf blight disease on Welsh onion caused by Xanthomonas axonopodis Pv. Allii. Antibiotics. 2021;10(5):517. (PMID: 340629218147253)
      Fu P, Zhao Q, Shi L, Xiong Q, Ren Z, Xu H, et al. Identification and characterization of two bacteriophages with lytic activity against multidrug-resistant Escherichia coli. Virus Res. 2021;291:198196. (PMID: 33098914)
      Son HM, Duc HM, Masuda Y, Honjoh K-i, Miyamoto T. Application of bacteriophages in simultaneously controlling Escherichia coli O157: H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl Microbiol Biotechnol. 2018;102(23):10259–71. (PMID: 30267128)
      Phothaworn P, Supokaivanich R, Lim J, Klumpp J, Imam M, Kutter E, et al. Development of a broad-spectrum salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiol. 2020;92:103586. (PMID: 32950171)
      Xuan G, Lin H, Wang J. Expression of a phage-encoded Gp21 protein protects Pseudomonas aeruginosa against phage infection. J Virol. 2022;96(5):e01769–21. (PMID: 350204738906398)
      Gulyaeva A, Garmaeva S, Kurilshikov A, Vich Vila A, Riksen NP, Netea MG, et al. Diversity and ecology of Caudoviricetes phages with genome terminal repeats in fecal metagenomes from four Dutch cohorts. Viruses. 2022;14(10):2305. (PMID: 362988609610469)
      Merabishvili M, Pirnay J-P, De Vos D. Guidelines to compose an ideal bacteriophage cocktail. In: Bacteriophage therapy: from lab to clinical practice; 2018. pp. 99–110.
      Duc HM, Son HM, Honjoh K-i, Miyamoto T. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. Lwt. 2018;91:353–60.
      Dennehy JJ, Abedon ST. Adsorption: phage acquisition of bacteria. In: Bacteriophages: biology, technology, therapy; 2021. pp. 93–117.
      Mutalik VK, Arkin AP. A phage foundry framework to systematically develop viral countermeasures to combat antibiotic-resistant bacterial pathogens. Iscience. 2022;25(4).
      Yazdi M, Bouzari M, Ghaemi EA, Shahin K. Isolation, characterization and genomic analysis of a novel bacteriophage VB_EcoS-Golestan infecting multidrug-resistant Escherichia coli isolated from urinary tract infection. Sci Rep. 2020;10(1):7690. (PMID: 323768327203180)
      Abdelsattar AS, Safwat A, Nofal R, Elsayed A, Makky S, El-Shibiny A. Isolation and characterization of bacteriophage ZCSE6 against Salmonella spp.: phage application in milk. Biologics. 2021;1(2):164–76.
      Malik DJ. Bacteriophage encapsulation using spray drying for phage therapy. Curr Issues Mol Biol. 2021;40(1):303–16. (PMID: 32678066)
      Cowley LA, Beckett SJ, Chase-Topping M, Perry N, Dallman TJ, Gally DL, et al. Analysis of whole genome sequencing for the Escherichia coli O157: H7 typing phages. BMC Genomics. 2015;16:1–13.
      Tang Z, Tang N, Wang X, Ren H, Zhang C, Zou L, et al. Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Front Microbiol. 2023;14:1091442. (PMID: 368761109978775)
      Zhu Y, Shang J, Peng C, Sun Y. Phage family classification under Caudoviricetes: a review of current tools using the latest ICTV classification framework. Front Microbiol. 2022;13:1032186. (PMID: 365904029800612)
      Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020;286:198080. (PMID: 32615132)
      Wang L, Tan Y, Liao Y, Li L, Han K, Bai H, et al. Isolation, characterization and whole genome analysis of an avian pathogenic Escherichia coli phage vB_EcoS_GN06. Veterinary Sci. 2022;9(12):675.
      Nazir A, Ali A, Qing H, Tong Y. Emerging aspects of jumbo bacteriophages. Infect drug Resist. 2021;14:5041–55.
      Liu W, Han L, Song P, Sun H, Zhang C, Zou L, et al. Complete genome sequencing of a Tequintavirus bacteriophage with a broad host range against Salmonella Abortus Equi isolates from donkeys. Front Microbiol. 2022;13:938616. (PMID: 360517569424859)
      Hasan M, Ahn J. Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics. 2022;11(7):915. (PMID: 358841699311878)
      Sultan-Alolama MI, Amin A, El-Tarabily KA, Vijayan R. Characterization and genomic analysis of Escherichia coli O157: H7 phage UAE_MI-01 isolated from birds. Int J Mol Sci. 2022;23(23):14846. (PMID: 364991789737526)
      Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and comparative genomic analysis of three virulent E. Coli bacteriophages with the potential to reduce antibiotic-resistant bacteria in the environment. Inter J Mol Sci. 2023;24(6):5696.
      Yang Z, Liu X, Shi Y, Yin S, Shen W, Chen J, et al. Characterization and genome annotation of a newly detected bacteriophage infecting multidrug-resistant Acinetobacter baumannii. Arch Virol. 2019;164:1527–33. (PMID: 309000726526140)
      Korf IH, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, et al. Still something to discover: novel insights into Escherichia coli phage diversity and taxonomy. Viruses. 2019;11(5):454. (PMID: 311090126563267)
      Tang F, Li Y, Zhang W, Lu C. Complete genome sequence of T4-Like Escherichia coli bacteriophage HX01. J Virol. 2012;86(24):13871. (PMID: 231662683503030)
      Raveendran K, Vaiyapuri M, Benala M, Sivam V, Badireddy MR. Diverse infective and lytic machineries identified in genome analysis of tailed coliphages against broad spectrum multidrug-resistant Escherichia coli. Int Microbiol. 2023;26(3):459–69. (PMID: 36504140)
    • Contributed Indexing:
      Keywords: E. coli O157:H7; Antibiotic resistance; Biocontrol; Food pathogen; Phage genome; Whole genome sequencing
    • الرقم المعرف:
      0 (Wastewater)
    • الموضوع:
      Date Created: 20241219 Date Completed: 20241219 Latest Revision: 20241219
    • الموضوع:
      20241219
    • الرقم المعرف:
      10.1186/s12866-024-03691-w
    • الرقم المعرف:
      39695941