Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Hierarchical marker genes selection in scRNA-seq analysis.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Sun Y;Sun Y; Qiu P; Qiu P
- المصدر:
PLoS computational biology [PLoS Comput Biol] 2024 Dec 12; Vol. 20 (12), pp. e1012643. Date of Electronic Publication: 2024 Dec 12 (Print Publication: 2024).
- نوع النشر :
Journal Article
- اللغة:
English
- معلومة اضافية
- المصدر:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
- بيانات النشر:
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
- الموضوع:
- نبذة مختصرة :
When analyzing scRNA-seq data containing heterogeneous cell populations, an important task is to select informative marker genes to distinguish various cell clusters and annotate the clusters with biologically meaningful cell types. In existing analysis methods and pipelines, marker genes are typically identified using a one-vs-all strategy, examining differential expression between one cell cluster versus the combination of all other cell clusters. However, this strategy applied to cell clusters belonging to closely related cell types often generates overlapping marker genes, which capture the common signature of closely related cell clusters but provide limited information for distinguishing them. To address the limitations of the one-vs-all strategy, we propose a hierarchical marker gene selection strategy that groups similar cell clusters and selects marker genes in a hierarchical manner. This strategy is able to improve the accuracy and interpretability of cell type identification in single-cell RNA-seq data.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Sun, Qiu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
Nat Immunol. 2019 Feb;20(2):163-172. (PMID: 30643263)
Mol Syst Biol. 2019 Oct;15(10):e9005. (PMID: 31657111)
Cell. 2015 May 21;161(5):1202-1214. (PMID: 26000488)
PLoS Comput Biol. 2019 Oct 28;15(10):e1007445. (PMID: 31658262)
Cell Metab. 2016 Oct 11;24(4):608-615. (PMID: 27667665)
Nat Methods. 2017 May;14(5):483-486. (PMID: 28346451)
J Transl Med. 2022 May 13;20(1):210. (PMID: 35562760)
Genome Biol. 2020 Jan 16;21(1):12. (PMID: 31948481)
Bioinformatics. 2020 Apr 15;36(8):2474-2485. (PMID: 31845960)
Nat Biotechnol. 2014 Apr;32(4):381-386. (PMID: 24658644)
Cell. 2019 Jun 13;177(7):1888-1902.e21. (PMID: 31178118)
Nat Commun. 2017 Jan 16;8:14049. (PMID: 28091601)
BMC Bioinformatics. 2020 Oct 23;21(1):477. (PMID: 33097004)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
Nat Commun. 2021 Feb 19;12(1):1186. (PMID: 33608535)
- الرقم المعرف:
0 (Genetic Markers)
- الموضوع:
Date Created: 20241212 Date Completed: 20241212 Latest Revision: 20241214
- الموضوع:
20241214
- الرقم المعرف:
PMC11637363
- الرقم المعرف:
10.1371/journal.pcbi.1012643
- الرقم المعرف:
39666603
No Comments.