Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Caffeine content in filter coffee brews as a function of degree of roast and extraction yield.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Lindsey ZR;Lindsey ZR; Williams JR; Williams JR; Burgess JS; Burgess JS; Moore NT; Moore NT; Splichal PM; Splichal PM
- المصدر:
Scientific reports [Sci Rep] 2024 Nov 25; Vol. 14 (1), pp. 29126. Date of Electronic Publication: 2024 Nov 25.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع:
- نبذة مختصرة : The effect of degree of roast on resulting caffeine content in brewed coffee has been extensively researched, but conflicting methodologies and results have muddled development of a general conclusion. In this study, 30 unique combinations of green coffee variety, degree of roast, and brew time were investigated regarding extraction yield and caffeine content. An AeroPress brewer was used to prepare brew samples using a 15:1 mass ratio of brew water to ground coffee. Refractometry and HPLC were respectively used to measure extraction yield and caffeine content of brewed samples. Scanning electron microscopy was used to measure porosity of roasted seeds and showed increasing porosity with the degree of roast. Extraction yields generally decreased for roast batches with roasting mass losses greater than ∼ 12-14%, and caffeine concentrations in 10-min brews decreased for roast batches with drop temperatures greater than ∼ 400-420 ∘ F. Under identical brewing conditions, caffeine concentrations in brewed samples were generally lower for dark roasts than light and medium roasts. However, at identical extraction yields, dark roasts generally exhibited higher caffeine concentrations than lighter roasted coffees. It is likely that the volatilization or decomposition of soluble compounds and increased porosity due to roasting act as competing mechanisms that determine compound concentrations in resulting brews.
Competing Interests: Declarations. Competing Interests: The authors declare no competing interests.
(© 2024. The Author(s).) - References: Ennis, D. The effects of caffeine on health: the benefits outweigh the risks. Perspectives 6(1), 2 (2014).
Wadhawan, M. & Anand, A. C. Coffee and liver disease. J. Clin. Exp. Hepatol. 6(1), 40–46 (2016). (PMID: 10.1016/j.jceh.2016.02.003271948954862107)
Rodríguez-Artalejo, F. & López-García, E. Coffee consumption and cardiovascular disease: a condensed review of epidemiological evidence and mechanisms. J. Agric. Food Chem. 66(21), 5257–5263 (2017). (PMID: 10.1021/acs.jafc.7b04506)
Hong, C. T., Chan, L. & Bai, C.-H. The effect of caffeine on the risk and progression of Parkinson’s disease: A meta-analysis. Nutrients 12(6), 1860 (2020). (PMID: 10.3390/nu12061860325804567353179)
Liu, Q.-P. et al. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and meta-analysis of prospective cohort studies. Nutrition 32(6), 628–636 (2016). (PMID: 10.1016/j.nut.2015.11.01526944757)
Carlström, M. & Larsson, S. C. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr. Rev. 76(6), 395–417 (2018). (PMID: 10.1093/nutrit/nuy01429590460)
Wang, L., Shen, X., Wu, Y. & Zhang, D. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust. N. Z. J. Psychiatry 50(3), 228–242 (2016). (PMID: 10.1177/000486741560313126339067)
Nkondjock, A. Coffee consumption and the risk of cancer: an overview. Cancer Lett. 277(2), 121–125 (2009). (PMID: 10.1016/j.canlet.2008.08.02218834663)
Tfouni, S. A. V. et al. Caffeine and chlorogenic acids intake from coffee brew: influence of roasting degree and brewing procedure. Int. J. Food Sci. Technol. 49(3), 747–752 (2014). (PMID: 10.1111/ijfs.12361)
Rao, N. Z., Fuller, M. & Grim, M. D. Physiochemical characteristics of hot and cold brew coffee chemistry: The effects of roast level and brewing temperature on compound extraction. Foods 9(7) (2020).
Lang, R. et al. Quantitative studies on roast kinetics for bioactives in coffee. J. Agric. Food Chem. 61(49), 12123–12128 (2013). (PMID: 10.1021/jf403846g24274681)
Bicho, N., Leitão, A. E. & Lidon, F. C. Identification of nutritional descriptors of roasting intensity in beverages of arabica and robusta coffee beans. Int. J. Food Sci. Nutr. 62(8), 865–871 (2011). (PMID: 10.3109/09637486.2011.58859422032554)
Dias, R. C. & Benassi, M. D. T. Discrimination between arabica and robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree. Beverages 1(3), 127–139 (2015). (PMID: 10.3390/beverages1030127)
Cwiková, O. et al. Effects of different processing methods of coffee arabica on colour, acrylamide, caffeine, chlorogenic acid, and polyphenol content. Foods 11(20), 3295 (2022). (PMID: 10.3390/foods11203295374310439602387)
Vignoli, J. A., Viegas, M. C., Bassoli, D. G. & de Toledo Benassi, M. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int., 61, 279–285 (2014). Coffee—Science, Technology and Impacts on Human Health.
Liang, N., Xue, W., Kennepohl, P. & Kitts, D. D. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chem. 213, 251–259 (2016). (PMID: 10.1016/j.foodchem.2016.06.04127451179)
Hečimović, I., Belščak-Cvitanović, A., Horžić, D. & Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 129(3), 991–1000 (2011). (PMID: 10.1016/j.foodchem.2011.05.05925212328)
Król, K., Gantner, M., Tatarak, A. & Hallmann, E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur. Food Res. Technol. 246(1) (2020).
Aghanuri, S., Salami, M. & Ziarati, P. Comparative study of mineral elements and caffeine in imported coffee varieties affected by the degree of roasting by hplc analysis. J. Chem. Pharm. Res. 8(9), 111–116 (2016).
Alshareef, S. Caffeine extraction from arabic coffee: The role of brewing and roasting. Imam J. Appl. Sci. 6, 1 (2021). (PMID: 10.4103/ijas.ijas_6_21)
Ihsan, B., Shalas, A., Elisabeth, Y., Claudia, L. & Putri, A. Determination of caffeine in robusta coffee beans with different roasting method using UV-Vis spectrophotometry. Food Res. 7(6), 29–34 (2023). (PMID: 10.26656/fr.2017.7(6).1006)
Nakilcioğlu-Taş, E. The effects of sugar addition and degree of roast on the bioactive compounds and antioxidant activity of Turkish-style coffee brews. Indian J. Pharm. Educ. Res. 52(3), 456–466 (2018). (PMID: 10.5530/ijper.52.3.53)
Tfouni, S. A. V. et al. Effect of roasting on chlorogenic acids, caffeine and polycyclic aromatic hydrocarbons levels in two coffea cultivars: Coffea arabica cv. catuaí amarelo iac-62 and coffea canephora cv. apoatã iac-2258. Int. J. Food Sci. Technol. 47(2), 406–415 (2012). (PMID: 10.1111/j.1365-2621.2011.02854.x)
Fuller, M. & Rao, N. Z. The effect of time, roasting temperature, and grind size on caffeine and chlorogenic acid concentrations in cold brew coffee. Sci. Rep. 7(1), 17979 (2017). (PMID: 10.1038/s41598-017-18247-4292698775740146)
Bayle, E. Chemical characterization of green coffee beans and determining the effect of roasting temperature on the content of caffeine. Chem. Mater. Res. 11, 14 (2019).
Cuong, T., Ling, L., Quan, G., Tiep, T., Nan, X., Qing, C. & Linh, L. Effect of roasting conditions on several chemical constituents of Vietnam robusta coffee. Ann. Univ. Dunarea de Jos of Galati, Fascicle VI: Food Technol. 38, 43–56 (2014).
Awwad, S., Issa, R., Alnsour, L., Albals, D. & Al-Momani, I. Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-dad and evaluation of the effect of degree of roasting on their levels. Molecules 26, 7502 (2021). (PMID: 10.3390/molecules26247502349465848705492)
Tsai, C.-F. & Jioe, I. P. J. The analysis of chlorogenic acid and caffeine content and its correlation with coffee bean color under different roasting degree and sources of coffee (coffea arabica typica). Processes 9(11) (2021).
Jung, S., Gu, S., Lee, S.-H. & Jeong, Y. Effect of roasting degree on the antioxidant properties of espresso and drip coffee extracted from coffea arabica cv. java. Appl. Sci. 11(15) (2021).
Saloko, S., Sulastri, Y., Murad & Rinjani, M. A. The effects of temperature and roasting time on the quality of ground Robusta coffee (Coffea rabusta) using Gene Café roaster. AIP Conf. Proc. 2199, 060001, 12 (2019).
Savitri, D., Arum, A., Suud, H., Farisi, O., Kusmanadhi, B. & Munandar, D. Caffeine content of bondowoso arabica ground coffee with variation of roasting profile and type of packages. Pelita Perkebunan (a Coffee and Cocoa Research Journal) 38, 128–137 (2022).
Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R. & Escher, F. Coffee roasting and aroma formation: Application of different time temperature conditions. J. Agric. Food Chem. 56(14), 5836–5846 (2008). (PMID: 10.1021/jf800327j18572953)
Schenker, S. Investigations on the hot air roasting of coffee beans. PhD thesis (ETH Zurich, 2000).
Rao, S. The Coffee Roaster’s Companion (2014).
Spiro, M. & Selwood, R. M. The kinetics and mechanism of caffeine infusion from coffee: The effect of particle size. J. Sci. Food Agric. 35, 915–924 (1984). (PMID: 10.1002/jsfa.2740350817)
Moroney, K. M., Lee, W. T., O’Brien, S. B. G., Suijver, F. & Marra, J. Coffee extraction kinetics in a well mixed system. J. Math. Ind. 7 (2016).
Pan, L., Xiao, Y., Jiang, F., Jiang, T., Zhu, J., Tang, W., Liu, X., Zhou, Y., Yu, L. et al. Comparison of characterization of cold brew and hot brew coffee prepared at various roasting degrees. J. Food Process. Preserv. 2023 (2023).
Yeager, S. E. et al. Roast level and brew temperature significantly affect the color of brewed coffee. J. Food Sci. 87, 1837–1850 (2022). (PMID: 10.1111/1750-3841.16089353477199311422)
Liang, J., Chan, K. C. & Ristenpart, W. D. An equilibrium desorption model for the strength and extraction yield of full immersion brewed coffee. Sci. Rep. 11(1), 6904 (2021). (PMID: 10.1038/s41598-021-85787-1337672507994670)
Pangborn, R. M., Trabue, I. M. & Little, A. C. Analysis of coffee, tea and artificially flavored drinks prepared from mineralized waters. J. Food Sci. 36(2), 355–362 (1971).
Lockhart, E. E., Tucker, C. & Merritt, M. C. The effect of water impurities on the flavor of brewed coffee. J. Food Sci. 20(6), 598–605 (1955). (PMID: 10.1111/j.1365-2621.1955.tb16874.x)
Wellinger, M., Smrke, S. & Yeretzian, C. Water for extraction–composition, recommendations, and treatment. In The Craft and Science of Coffee 381–398 (Elsevier, 2017).
Hendon, C. H., Colonna-Dashwood, L. & Colonna-Dashwood, M. The role of dissolved cations in coffee extraction. J. Agric. Food Chem. 62(21), 4947–4950 (2014). (PMID: 10.1021/jf501687c24802110)
Wang, X., William, J., Fu, Y. & Lim, L.-T. Effects of capsule parameters on coffee extraction in single-serve brewer. Food Res. Int. 89, 797–805 (2016). (PMID: 10.1016/j.foodres.2016.09.03128460981)
Mo, C., Johnston, R., Navarini, L., Liverani, F. S. & Ellero, M. Exploring the link between coffee matrix microstructure and flow properties using combined X-ray microtomography and smoothed particle hydrodynamics simulations. Sci. Rep. 13 (2023).
Kornman, C. Green Coffee: A Guide for Roasters and Buyers (Roast Magazine, 2022).
Hoos, R. Modulating the Flavor Profile of Coffee (Lulu Press, 2015).
Clarke, R. & Vitzthum, O. Coffee: Recent Developments (Wiley, 2008).
Schonberg, A. & Moubacher, R. The Strecker degradation of α-amino acids. Chem. Rev. 50(2), 261–277 (1952). (PMID: 10.1021/cr60156a002)
Münchow, M., Alstrup, J., Steen, I. & Giacalone, D. Roasting conditions and coffee flavor: A multi-study empirical investigation. Beverages 6(2), 29 (2020). (PMID: 10.3390/beverages6020029)
Gagné, J. The Physics of Filter Coffee (Scott Rao, 2020).
Willems, J. L. et al. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal. Chim. Acta 933, 164–174 (2016). (PMID: 10.1016/j.aca.2016.05.04127497009)
Bicho, N. C., Leitao, A. E., Ramalho, J. C. & Lidon, F. C. Identification of chemical clusters discriminators of the roast degree in arabica and robusta coffee beans. Eur. Food Res. Technol. 233, 303–311 (2011). (PMID: 10.1007/s00217-011-1518-5)
Crozier, T. W., Stalmach, A., Lean, M. E. & Crozier, A. Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food Funct. 3(1), 30–33 (2012). (PMID: 10.1039/C1FO10240K22130653)
Oliveros, N. O., Hernández, J., Sierra-Espinosa, F., Guardián-Tapia, R. & Pliego-Solórzano, R. Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. J. Food Eng. 199, 100–112 (2017). (PMID: 10.1016/j.jfoodeng.2016.12.012)
Frisullo, P., Barnabà, M., Navarini, L. & Del Nobile, M. A. Coffea arabica beans microstructural changes induced by roasting: An X-ray microtomographic investigation. J. Food Eng. 108(1), 232–237 (2012). (PMID: 10.1016/j.jfoodeng.2011.07.036)
Smrke, S., Opitz, S. E., Vovk, I. & Yeretzian, C. How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusion chromatography. Food Funct. 4(7), 1082–1092 (2013). (PMID: 10.1039/c3fo30377b23592006)
Zubair, M. U., Hassan, M. M. & Al-Meshal, I. A. Caffeine. In Analytical Profiles of Drug Substances, vol. 15, 71–150 (Academic Press, 1986).
Cleminte, C., Ionita, D., Lisa, C., Cristea, M., Mămăligă, I. & Lisa, G. Evaluation of the sublimation process of some purine derivatives: Sublimation rate, activation energy, mass transfer coefficients and phenomenological models. Materials 15 (2022).
Illy, A. & Viani, R. Espresso Coffee: The Science of Quality (Academic Press, 2005). - الرقم المعرف: 3G6A5W338E (Caffeine)
0 (Coffee) - الموضوع: Date Created: 20241124 Date Completed: 20241124 Latest Revision: 20241128
- الموضوع: 20241202
- الرقم المعرف: PMC11586412
- الرقم المعرف: 10.1038/s41598-024-80385-3
- الرقم المعرف: 39582028
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.