Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Potential biological applications of environment friendly synthesized iron oxide nanoparticles using Sageretia thea root extract.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      The green synthesis of Iron oxide nanoparticles (IONPs) has shown numerous advantages over conventional physical and chemical synthesis methods as these methods non-ecofriendly and uses toxic chemicals and complicated equipments. In present study, Iron oxide nanoparticles (IONPs) were created using simple, sustainable, eco-friendly and green chemistry protocol. The roots of novel medicinal plant Sageretia thea was used as a bio-template for the preparation of IONPs. Further, the synthesis of IONPs was confirmed using different analytical tools like UV-Vis, FT-IR, XRD, EDX, and SEM. The average sizes of (NPs) were found to be 16.04 nm. Further, asynthesized IONPs were evaluated for several biological potentials including antibacterial, antifungal Anti-radical potentials (DPPH) and cytotoxicity assays. Antibacterial potencies were investigated using bacterial strains (in the concentration range of 1000-31.25 µg/mL) revealing significant antibacterial potentials. ABA and SAU was reported to be least susceptible while KPN was observed to be most susceptible strain in bactericidal studies. Further, different fungal strains were used to investigate the antifungal potentials of IONPs (in the concentration range of 1000-31.25 µg/mL) and revealed strong antifungal potencies against different pathogenic strains. Furthermore, MRA, FA and ANI were most susceptible and ABA was least susceptible in fungicidal examination. Significant cytotoxicity potential was examined using brine shrimps cytotoxicity assay, thus revealing the cytotoxic potential of asynthesized IONPs. The IC 50 for S. thea based IONPs was recorded as 33.85 µg/mL. Strong anti-radical potentials (DPPH) assay was performed to evaluate the ROS scavenging potential of S.T@IONPs. The highest scavenging potential was noted as 78.06%, TRP as 81.92% and TAC as 84% on maximum concentration of 200 µg/mL. In summary, our experimental results concluded, that asynthesized IONPs have strong antibacterial, antifungal, DPPH scavenging and cytotoxic potentials and can be used in different biological applications. In nutshell, our as-prepared nanoparticles have shown potential bioactivities and we recommend, different other in vitro and in vivo biological and bioactivities to further analyze the biological potentials.
      Competing Interests: Declarations Competing interests The authors declare no competing interests. Ethics approval and consent to participate This study does not include human or animal subjects. Statement on guidelines All experimental studies and experimental materials involved in this research are in full compliance with relevant institutional, national and international guidelines and legislation posing a conflict or bias.
      (© 2024. The Author(s).)
    • References:
      Prabu, P. & Losetty, V. Green synthesis of copper oxide nanoparticles using Macroptilium Lathyroides (L) leaf extract and their spectroscopic characterization, biological activity and photocatalytic dye degradation study. J. Mol. Struct. 1301, 137404 (2024). (PMID: 10.1016/j.molstruc.2023.137404)
      Sharifi-Rad, M., Elshafie, H. S. & Pohl, P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf extract: their bio-pharmaceutical and catalytic properties. J. Photochem. Photobiol., a. 448, 115318 (2024). (PMID: 10.1016/j.jphotochem.2023.115318)
      Velsankar, K., Sudhahar, S. & Maheshwaran, G. Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex Tritaeniorhynchus mosquito larvae with its biological applications. J. Photochem. Photobiol., B. 200, 111650 (2019). (PMID: 10.1016/j.jphotobiol.2019.111650)
      Venkataesan Kumari, B. et al. Green synthesised silver nanoparticles using Anoectochilus Elatus leaf extract: Characterisation and evaluation of antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities. J. Compos. Sci. 7 (11), 453 (2023). (PMID: 10.3390/jcs7110453)
      Hameed, S. et al. Cannabis sativa-mediated synthesis of gold nanoparticles and their biomedical properties. Bioinspired Biomim. Nanobiomaterials. 9 (2), 95–102 (2020). (PMID: 10.1680/jbibn.19.00023)
      Velsankar, K., Parvathy, G., Sankaranarayanan, K., Mohandoss, S. & Sudhahar, S. Green synthesis of silver oxide nanoparticles using Panicum miliaceum grains extract for biological applications. Adv. Powder Technol. 33 (7), 103645 (2022). (PMID: 10.1016/j.apt.2022.103645)
      Singh, H. et al. Revisiting the green synthesis of nanoparticles: uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int. J. Nanomed., 4727–4750. (2023).
      Velsankar, K., Aravinth, K., Yong, W., Mohandoss, S. & Paiva-Santos, A. C. NiO nanoparticles, an algorithm of their biosynthesis, toxicity, and biomedical activities. J. Mol. Struct. 1291, 136012 (2023). (PMID: 10.1016/j.molstruc.2023.136012)
      Velsankar, K. et al. Bio-derived synthesis of MgO nanoparticles and their anticancer and hemolytic bioactivities. Biocatal. Agric. Biotechnol. 53, 102870 (2023). (PMID: 10.1016/j.bcab.2023.102870)
      Velsankar, K., Parvathy, G., Mohandoss, S., Ravi, G. & Sudhahar, S. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J. Drug Deliv. Sci. Technol. 76, 103799 (2022). (PMID: 10.1016/j.jddst.2022.103799)
      Kolo, K. Z., Nwokem, N. C. & Abechi, S. E. Green Synthesis of Iron Oxide Nanoparticle using Funaria hygrometrica Extract, and the study of its antimicrobial activities. J. Chem. Lett. 4 (4), 222–231 (2024).
      Ikhuoria, E. U. et al. Advancing green nanotechnology: harnessing the bio-reducing properties of Musa Paradisiaca peel extract for sustainable synthesis of iron oxide nanoparticles. J. Multidisciplinary Appl. Nat. Sci. 4 (1), 108–119 (2024). (PMID: 10.47352/jmans.2774-3047.194)
      Anwaar, S. et al. Boosting Solanum tuberosum resistance to Alternaria solani through green synthesized ferric oxide (Fe2O3) nanoparticles. Sci. Rep. 14 (1), 2375 (2024). (PMID: 382871431082515510.1038/s41598-024-52704-1)
      Khalil, A. T. et al. Single precursor-based synthesis of transition metal sulfide nanoparticles and evaluation of their antimicrobial, antioxidant and cytotoxic potentials. Appl. Nanosci. 11 (9), 2489–2502 (2021). (PMID: 10.1007/s13204-021-02030-z)
      Alamu, G. A. et al. Green synthesis and characterizations of magnetic iron oxide nanoparticles using Moringa oleifera extract for improved performance in dye-sensitized solar cell. Chem. Phys. Impact. 8, 100542 (2024). (PMID: 10.1016/j.chphi.2024.100542)
      Velsankar, K., Parvathy, G., Mohandoss, S., Krishna Kumar, M. & Sudhahar, S. Celosia argentea leaf extract-mediated green synthesized iron oxide nanoparticles for bio-applications. J. Nanostructure Chem., 1–16. (2021).
      Devi, D., Julkapli, N. M., Sagadevan, S. & Johan, M. R. Eco-friendly green synthesis approach and evaluation of environmental and biological applications of Iron oxide nanoparticles. Inorg. Chem. Commun., 110700. (2023).
      Duraisamy, S. et al. Facile synthesis of silver nanoparticles using the Simarouba glauca leaf extract and their impact on biological outcomes: a novel perspective for nano-drug development. J. Drug Deliv. Sci. Technol. 69, 103160 (2022). (PMID: 10.1016/j.jddst.2022.103160)
      Saleh, T. A. & Fadillah, G. Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications. Trends Environ. Anal. Chem., e00204. (2023).
      Jafarzadeh, S. et al. Green synthesis of nanomaterials for smart biopolymer packaging: challenges and outlooks. J. Nanostructure Chem., 1–24. (2023).
      Alzubaidi, A. K. et al. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl. Sci. 13 (4), 2182 (2023). (PMID: 10.3390/app13042182)
      Khan, S. et al. Biosynthesis and characterization of iron oxide nanoparticles from Mentha spicata and screening its combating potential against Phytophthora infestans. Front. Plant Sci. 13, 1001499 (2022). (PMID: 36226302954870410.3389/fpls.2022.1001499)
      Ullah, Z. et al. Biogenic synthesis, characterization, and in vitro biological investigation of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata. Sci. Rep. 14 (1), 10484 (2024). (PMID: 387147671107663210.1038/s41598-024-60694-3)
      Ramasubbu, K. et al. Green synthesis of copper oxide nanoparticles using sesbania grandiflora leaf extract and their evaluation of anti-diabetic, cytotoxic, anti-microbial, and anti-inflammatory properties in an in-vitro approach. Fermentation. 9 (4), 332 (2023). (PMID: 10.3390/fermentation9040332)
      Awais, S. et al. Green synthesis of iron oxide nanoparticles using Bombax malabaricum for antioxidant, antimicrobial and photocatalytic applications. J. Clean. Prod. 406, 136916 (2023). (PMID: 10.1016/j.jclepro.2023.136916)
      Sun, Y., Ma, J. & Chen, F. Combined application of plant growth-promoting bacteria and iron oxide nanoparticles ameliorates the toxic effects of arsenic in Ajwain (Trachyspermum ammi L). Front. Plant Sci. 13, 1098755 (2022). (PMID: 36643291983231510.3389/fpls.2022.1098755)
      Khalil, A. T. et al. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) And their pharmacognostic properties. Green Chem. Lett. Rev. 10 (4), 186–201 (2017). (PMID: 10.1080/17518253.2017.1339831)
      Shah, S., Din, S. U., Khan, A., Rehmanullah & Shah, S. A. Green synthesis and antioxidant study of silver nanoparticles of root extract of Sageretia thea and its role in oxidation protection technology. J. Polym. Environ. 26, 2323–2332 (2018). (PMID: 10.1007/s10924-017-1129-8)
      Shinwari, Z. K. & Maaza, M. The study of structural, physical and electrochemical activity of Zno nanoparticles synthesized by green natural extracts of sageretia thea. Arch. De Med. 3 (2), 9 (2017).
      Khalil, A. T. et al. Sageretia thea (Osbeck.) Mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine. 12 (15), 1767–1789 (2017). (PMID: 2869983810.2217/nnm-2017-0124)
      Shah, S. et al. Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. J. Nanostructure Chem. 12 (1), 129–140 (2022). (PMID: 10.1007/s40097-021-00407-8)
      Khalil, A. T. et al. Sageretia thea (Osbeck.) Modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol. 46 (4), 838–852 (2018). (PMID: 2868704510.1080/21691401.2017.1345928)
      Ullah, S. et al. Bioinspired synthesis of nanoparticles and their biomedical potential: The Pakistan experience: Bioinspired nanoparticle synthesis in Pakistan. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 56(3), 37–47. (2019).
      Khalil, A. T., Hameed, S., Afridi, S., Mohamed, H. E. A. & Shinwari, Z. K. Sageretia thea mediated biosynthesis of metal oxide nanoparticles for catalytic degradation of crystal violet dye. Materials Today: Proceedings, 36, 397–400. (2021).
      Khalil, A. T. et al. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck). Arab. J. Chem. 13 (1), 606–619 (2020). (PMID: 10.1016/j.arabjc.2017.07.004)
      Kanagasubbulakshmi, S. & Kadirvelu, K. Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J. 2 (4), 422–427 (2017). (PMID: 10.14429/dlsj.2.12277)
      Karpagavinayagam, P. & Vedhi, C. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum. 160, 286–292 (2019). (PMID: 10.1016/j.vacuum.2018.11.043)
      Buarki, F., AbuHassan, H., Al Hannan, F. & Henari, F. Z. Green synthesis of iron oxide nanoparticles using Hibiscus rosa sinensis flowers and their antibacterial activity. J. Nanatechnol. 2022, 1–6 (2022). (PMID: 10.1155/2022/5474645)
      Ejidike, I. P. & Clayton, H. S. Green synthesis of silver nanoparticles mediated by Daucus carota L.: antiradical, antimicrobial potentials, in vitro cytotoxicity against brain glioblastoma cells. Green Chem. Lett. Rev. 15 (2), 298–311 (2022). (PMID: 10.1080/17518253.2022.2054290)
      Abbasi, B. A. et al. Rhamnella Gilgitica functionalized green synthesis of ZnONPs and their multiple therapeutic properties. Microsc. Res. Tech. 85 (6), 2338–2350 (2022). (PMID: 3529407210.1002/jemt.24090)
      Uddin, S. et al. Green synthesis of Nickel Oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules. 26 (6), 1548 (2021). (PMID: 33799864799960910.3390/molecules26061548)
      Abbasi, B. A. et al. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus Triquetra leaf extract. Mater. Res. Express. 6 (12), 1250e7 (2020). (PMID: 10.1088/2053-1591/ab664d)
      Hashemi, Z., Mizwari, Z. M., Mohammadi-Aghdam, S., Mortazavi-Derazkola, S. & Ebrahimzadeh, M. A. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@ SEE): optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem. 15 (1), 103525 (2022). (PMID: 10.1016/j.arabjc.2021.103525)
      Khan, W. et al. Antioxidant, antibacterial, and catalytic performance of biosynthesized silver nanoparticles of Rhus Javanica, Rumex Hastatus, and Callistemon viminalis. Saudi J. Biol. Sci. 29 (2), 894–904 (2022). (PMID: 3519775710.1016/j.sjbs.2021.10.016)
      Wongyai, K., Wintachai, P., Maungchang, R. & Rattanakit, P. Exploration of the antimicrobial and catalytic properties of gold nanoparticles greenly synthesized by Cryptolepis Buchanani Roem. And Schult extract. J. Nanomaterials. 2020, 1–11 (2020). (PMID: 10.1155/2020/1320274)
      Ustun, E., Önbaş, S. C., Çelik, S. K., Ayvaz, M. Ç. & Şahin, N. Green synthesis of iron oxide nanoparticles by using Ficus carica leaf extract and its antioxidant activity. Biointerface Research in Applied Chemistry, 2021(12), 2108–2116. (2022).
      Adebayo-Tayo, B. C., Borode, S. O. & Alao, S. O. In–vitro antibacterial and antifungal efficacy of greenly fabricated Senna alata leaf extract silver nanoparticles and silver nanoparticle-cream blend. Periodica Polytech. Chem. Eng. 66 (2), 248–260 (2022). (PMID: 10.3311/PPch.18271)
      Abou Gabal, R., Shokeir, D. & Orabi, A. Cytotoxicity and hemostatic one step green synthesis of Iron nanoparticles coated with Green Tea for Biomedical Application. Trends Sci. 19 (3), 2062–2062 (2022). (PMID: 10.48048/tis.2022.2062)
      Espinoza-Gomez, H., Flores-López, L. Z., Espinoza, K. A. & Alonso-Nuñez, G. Microstrain analyses of Fe3O4NPs greenly synthesized using Gardenia jasminoides flower extract, during the photocatalytic removal of a commercial dye. Appl. Nanosci. 10 (1), 127–140 (2020). (PMID: 10.1007/s13204-019-01070-w)
      Yousefbeyk, F. et al. Green synthesis of silver nanoparticles from Stachys byzantina K. Koch: characterization, antioxidant, antibacterial, and cytotoxic activity. Part. Sci. Technol. 40 (2), 219–232 (2022). (PMID: 10.1080/02726351.2021.1930302)
      Velsankar, K., Sudhahar, S., Parvathy, G. & Kaliammal, R. Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Mater. Chem. Phys. 239, 121976 (2020). (PMID: 10.1016/j.matchemphys.2019.121976)
      Abdel-Moneim, A. M. E. et al. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J. Biol. Sci. 29 (2), 1197–1209 (2022). (PMID: 3519778710.1016/j.sjbs.2021.09.046)
      Verma, M. L., Dhanya, B. S., Thakur, M., Jeslin, J. & Jana, A. K. Plant derived nanoparticles and their biotechnological applications. In Comprehensive Analytical Chemistry (Vol. 94, 331–362). Elsevier. (2021).
      da Silva, B. L. et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int. J. Nanomed. 14, 9395 (2019). (PMID: 10.2147/IJN.S216204)
      Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017). (PMID: 10.2147/IJN.S121956)
      Ong, K. S., Cheow, Y. L. & Lee, S. M. The role of reactive oxygen species in the antimicrobial activity of pyochelin. J. Adv. Res. 8 (4), 393–398 (2017). (PMID: 28580180544737310.1016/j.jare.2017.05.007)
      Sudhakar, C. et al. Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. Inorg. Chem. Commun. 133, 108977 (2021). (PMID: 10.1016/j.inoche.2021.108977)
      Vahdati, M. & Tohidi Moghadam, T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep. 10 (1), 1–10 (2020). (PMID: 10.1038/s41598-019-57333-7)
      Gibała, A. et al. Antibacterial and Antifungal properties of Silver NanoparticlesEffect of a surface-stabilizing Agent. Biomolecules. 11 (10), 1481 (2021). (PMID: 34680114853341410.3390/biom11101481)
      Shaikh, S. et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 20 (10), 2468 (2019). (PMID: 31109079656678610.3390/ijms20102468)
      Dos Santos, E. M. et al. Nanoencapsulated Lippia Rotundifolia antimicrobial peptide: synthesis, characterization, antimicrobial activity, and cytotoxicity evaluations. Arch. Microbiol. 204 (3), 1–10 (2022). (PMID: 10.1007/s00203-022-02787-z)
      Nagalingam, M., Rajeshkumar, S., Balu, S. K., Tharani, M. & Arunachalam, K. Anticancer and antioxidant activity of morinda citrifolia leaf mediated selenium nanoparticles. Journal of Nanomaterials, 2022, 1–7. (2022).
      Al-Radadi, N. S. et al. Zingiber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-Alzheimer, anti-oxidant, and anti-microbial applications. Inorg. Chem. Commun. 140, 109274 (2022). (PMID: 10.1016/j.inoche.2022.109274)
      Nagalingam, M., Rajeshkumar, S., Balu, S. K., Tharani, M. & Arunachalam, K. Anticancer and Antioxidant Activity of Morinda Citrifolia Leaf Mediated Selenium Nanoparticles. Journal of Nanomaterials, 2022. (2022).
      Sari, M., Surbakti, C., Khairani, T. N., Sari, W. N. & Nasution, G. S. Toxicity test of Catharanthus roseus Flower extract with brine shrimp lethality test method. Int. J. Sci. Environ. (IJSE). 2 (1), 24–32 (2022). (PMID: 10.51601/ijse.v2i1.12)
      Patient, A. et al. Polyphenol composition and antioxidant activity of Tapirira Guianensis Aubl.(Anarcadiaceae) leaves. Plants. 11 (3), 326 (2022). (PMID: 35161307883791810.3390/plants11030326)
      Sini, K. R., Sinha, B. N. & Karpagavalli, M. Determining the antioxidant activity of certain medicinal plants of Attapady, (Palakkad), India using DPPH assay. Curr. Bot., 1 (1), 13–16 (2011).
      Gul, F. et al. Phytochemistry, Biological Activities and in silico Molecular Docking Studies of Oxalis pes-caprae L. Compounds against SARS-CoV-2 (Journal of King Saud University - Science, 2022).
      Shahbaz, A. et al. Chemical composition of Gastrocotyle Hispida (Forssk.) Bunge and Heliotropium crispum desf. And evaluation of their multiple in vitro biological potentials. Saudi J. Biol. Sci. 28 (11), 6086–6096 (2021). (PMID: 34764742856883410.1016/j.sjbs.2021.09.040)
      Shah, S. T. et al. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials. 7 (10), 306 (2017). (PMID: 28981476566647110.3390/nano7100306)
      Periakaruppan, R. et al. Utilization of tea resources with the production of superparamagnetic biogenic iron oxide nanoparticles and an assessment of their antioxidant activities. J. Clean. Prod. 278, 123962 (2021). (PMID: 10.1016/j.jclepro.2020.123962)
      Zakariya, N. A., Majeed, S. & Jusof, W. H. W. Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium spp. Sens. Int. 3, 100164 (2022). (PMID: 10.1016/j.sintl.2022.100164)
    • Contributed Indexing:
      Keywords: Sageretia thea; Antibacterial; Antifungal; DPPH; Iron oxide nanoparticles; Phytochemicals
    • الرقم المعرف:
      0 (Plant Extracts)
      0 (Anti-Bacterial Agents)
      0 (Antifungal Agents)
      1K09F3G675 (ferric oxide)
      0 (Ferric Compounds)
    • الموضوع:
      Date Created: 20241116 Date Completed: 20241116 Latest Revision: 20241122
    • الموضوع:
      20241122
    • الرقم المعرف:
      PMC11569125
    • الرقم المعرف:
      10.1038/s41598-024-79953-4
    • الرقم المعرف:
      39550505