Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A review of feature selection strategies utilizing graph data structures and Knowledge Graphs.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 100912837 Publication Model: Print Cited Medium: Internet ISSN: 1477-4054 (Electronic) Linking ISSN: 14675463 NLM ISO Abbreviation: Brief Bioinform Subsets: MEDLINE
    • بيانات النشر:
      Publication: Oxford : Oxford University Press
      Original Publication: London ; Birmingham, AL : H. Stewart Publications, [2000-
    • الموضوع:
    • نبذة مختصرة :
      Feature selection in Knowledge Graphs (KGs) is increasingly utilized in diverse domains, including biomedical research, Natural Language Processing (NLP), and personalized recommendation systems. This paper delves into the methodologies for feature selection (FS) within KGs, emphasizing their roles in enhancing machine learning (ML) model efficacy, hypothesis generation, and interpretability. Through this comprehensive review, we aim to catalyze further innovation in FS for KGs, paving the way for more insightful, efficient, and interpretable analytical models across various domains. Our exploration reveals the critical importance of scalability, accuracy, and interpretability in FS techniques, advocating for the integration of domain knowledge to refine the selection process. We highlight the burgeoning potential of multi-objective optimization and interdisciplinary collaboration in advancing KG FS, underscoring the transformative impact of such methodologies on precision medicine, among other fields. The paper concludes by charting future directions, including the development of scalable, dynamic FS algorithms and the integration of explainable AI principles to foster transparency and trust in KG-driven models.
      (© The Author(s) 2024. Published by Oxford University Press.)
    • References:
      J Biomed Inform. 2008 Oct;41(5):706-16. (PMID: 18472304)
      Cell. 2019 Jan 10;176(1-2):11-42. (PMID: 30633901)
      Stud Health Technol Inform. 2006;121:279-90. (PMID: 17095826)
      Nucleic Acids Res. 2016 Jan 4;44(D1):D1075-9. (PMID: 26481350)
      Science. 1966 Jul 1;153(3731):34-7. (PMID: 17730601)
      Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. (PMID: 14681409)
      J Med Internet Res. 2024 Apr 18;26:e46777. (PMID: 38635981)
      Am J Hum Genet. 2017 Jun 1;100(6):895-906. (PMID: 28552198)
      BMC Med Res Methodol. 2013 Mar 24;13:49. (PMID: 23522349)
      Healthc Inform Res. 2018 Oct;24(4):251-252. (PMID: 30443412)
      J Math Psychol. 2000 Mar;44(1):205-231. (PMID: 10733865)
      Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
      IEEE J Biomed Health Inform. 2020 Jul;24(7):1952-1967. (PMID: 32386166)
      Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. (PMID: 29126136)
      Sci Data. 2023 Feb 2;10(1):67. (PMID: 36732524)
      J Proteome Res. 2020 Nov 6;19(11):4624-4636. (PMID: 32654489)
      J Am Med Inform Assoc. 2011 Jul-Aug;18(4):441-8. (PMID: 21515544)
      J Biomed Inform. 2023 Jun;142:104368. (PMID: 37086959)
      Sci Rep. 2021 Nov 30;11(1):23179. (PMID: 34848761)
      Mol Syst Biol. 2017 Nov 24;13(11):954. (PMID: 29175850)
      PLoS One. 2021 May 14;16(5):e0251162. (PMID: 33989299)
      Health Inf Sci Syst. 2023 Nov 16;11(1):54. (PMID: 37981989)
      Brief Bioinform. 2023 Jan 19;24(1):. (PMID: 36528805)
      PLoS Negl Trop Dis. 2019 Jan 16;13(1):e0006436. (PMID: 30650160)
      Brief Bioinform. 2022 May 13;23(3):. (PMID: 35453147)
      Sci Data. 2024 Apr 11;11(1):363. (PMID: 38605048)
    • Grant Information:
      U01AG066833 United States NH NIH HHS
    • Contributed Indexing:
      Keywords: Knowledge Graphs; deep learning; explainable AI; feature selection; precision medicine
    • الموضوع:
      Date Created: 20241111 Date Completed: 20241111 Latest Revision: 20241116
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC11551862
    • الرقم المعرف:
      10.1093/bib/bbae521
    • الرقم المعرف:
      39526853