Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Detecting Multi-Scale Defects in Material Extrusion Additive Manufacturing of Fiber-Reinforced Thermoplastic Composites: A Review of Challenges and Advanced Non-Destructive Testing Techniques.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101545357 Publication Model: Electronic Cited Medium: Internet ISSN: 2073-4360 (Electronic) Linking ISSN: 20734360 NLM ISO Abbreviation: Polymers (Basel) Subsets: PubMed not MEDLINE
    • بيانات النشر:
      Original Publication: Basel : MDPI
    • نبذة مختصرة :
      Additive manufacturing (AM) defects present significant challenges in fiber-reinforced thermoplastic composites (FRTPCs), directly impacting both their structural and non-structural performance. In structures produced through material extrusion-based AM, specifically fused filament fabrication (FFF), the layer-by-layer deposition can introduce defects such as porosity (up to 10-15% in some cases), delamination, voids, fiber misalignment, and incomplete fusion between layers. These defects compromise mechanical properties, leading to reduction of up to 30% in tensile strength and, in some cases, up to 20% in fatigue life, severely diminishing the composite's overall performance and structural integrity. Conventional non-destructive testing (NDT) techniques often struggle to detect such multi-scale defects efficiently, especially when resolution, penetration depth, or material heterogeneity pose challenges. This review critically examines manufacturing defects in FRTPCs, classifying FFF-induced defects based on morphology, location, and size. Advanced NDT techniques, such as micro-computed tomography (micro-CT), which is capable of detecting voids smaller than 10 µm, and structural health monitoring (SHM) systems integrated with self-sensing fibers, are discussed. The role of machine-learning (ML) algorithms in enhancing the sensitivity and reliability of NDT methods is also highlighted, showing that ML integration can improve defect detection by up to 25-30% compared to traditional NDT techniques. Finally, the potential of self-reporting FRTPCs, equipped with continuous fibers for real-time defect detection and in situ SHM, is investigated. By integrating ML-enhanced NDT with self-reporting FRTPCs, the accuracy and efficiency of defect detection can be significantly improved, fostering broader adoption of AM in aerospace applications by enabling the production of more reliable, defect-minimized FRTPC components.
    • References:
      Materials (Basel). 2022 Jul 01;15(13):. (PMID: 35806767)
      Polymers (Basel). 2021 Jul 30;13(15):. (PMID: 34372127)
      Polymers (Basel). 2022 Nov 15;14(22):. (PMID: 36433068)
      Materials (Basel). 2022 Oct 20;15(20):. (PMID: 36295400)
      Sensors (Basel). 2023 Apr 07;23(8):. (PMID: 37112153)
      Polymers (Basel). 2021 Mar 08;13(5):. (PMID: 33800303)
      Materials (Basel). 2023 Sep 14;16(18):. (PMID: 37763488)
      Ultrasonics. 2022 Aug;124:106776. (PMID: 35653984)
      RSC Adv. 2021 Nov 12;11(58):36398-36438. (PMID: 35494368)
      Polymers (Basel). 2020 Jul 10;12(7):. (PMID: 32664374)
      Adv Mater. 2018 May;30(19):e1705483. (PMID: 29573286)
      PLoS One. 2018 Jun 7;13(6):e0198370. (PMID: 29879163)
      J Mater Chem B. 2016 Feb 14;4(6):1142-1149. (PMID: 32263007)
      Materials (Basel). 2020 Aug 14;13(16):. (PMID: 32824047)
      Polymers (Basel). 2019 Jul 05;11(7):. (PMID: 31284532)
      Polymers (Basel). 2021 Feb 28;13(5):. (PMID: 33670934)
      ACS Nano. 2021 Apr 27;15(4):5775-5780. (PMID: 33906288)
      Materials (Basel). 2023 Sep 30;16(19):. (PMID: 37834659)
      Polymers (Basel). 2018 Aug 18;10(8):. (PMID: 30960850)
      Sensors (Basel). 2023 Oct 31;23(21):. (PMID: 37960572)
      Polymers (Basel). 2019 Apr 10;11(4):. (PMID: 30974859)
      3D Print Addit Manuf. 2024 Jun 18;11(3):e1196-e1208. (PMID: 39359573)
      Sensors (Basel). 2022 Jul 21;22(14):. (PMID: 35891120)
      Sensors (Basel). 2021 Dec 27;22(1):. (PMID: 35009695)
      Bull Earthq Eng. 2024;22(3):1309-1357. (PMID: 38419620)
      Sensors (Basel). 2022 Oct 30;22(21):. (PMID: 36366018)
      Polymers (Basel). 2022 Jan 21;14(3):. (PMID: 35160416)
      Polymers (Basel). 2019 Sep 12;11(9):. (PMID: 31547357)
      Materials (Basel). 2022 May 21;15(10):. (PMID: 35629723)
    • Contributed Indexing:
      Keywords: continuous fiber-reinforced thermoplastics; machine learning; manufacturing defects; non-destructive testing; self-reporting; structural health monitoring
    • الموضوع:
      Date Created: 20241109 Latest Revision: 20241116
    • الموضوع:
      20241116
    • الرقم المعرف:
      PMC11548215
    • الرقم المعرف:
      10.3390/polym16212986
    • الرقم المعرف:
      39518196