Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Structural basis of 3'-tRNA maturation by the human mitochondrial RNase Z complex.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 8208664 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-2075 (Electronic) Linking ISSN: 02614189 NLM ISO Abbreviation: EMBO J Subsets: MEDLINE
    • بيانات النشر:
      Publication: 2024- : [London] : Nature Publishing Group
      Original Publication: Eynsham, Oxford, England : Published for the European Molecular Biology Organization by IRL Press, [c1982-
    • الموضوع:
    • نبذة مختصرة :
      Maturation of human mitochondrial tRNA is essential for cellular energy production, yet the underlying mechanisms remain only partially understood. Here, we present several cryo-EM structures of the mitochondrial RNase Z complex (ELAC2/SDR5C1/TRMT10C) bound to different maturation states of mitochondrial tRNA His , showing the molecular basis for tRNA-substrate selection and catalysis. Our structural insights provide a molecular rationale for the 5'-to-3' tRNA processing order in mitochondria, the 3'-CCA antideterminant effect, and the basis for sequence-independent recognition of mitochondrial tRNA substrates. Furthermore, our study links mutations in ELAC2 to clinically relevant mitochondrial diseases, offering a deeper understanding of the molecular defects contributing to these conditions.
      Competing Interests: Disclosure and competing interests statement. The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      Akawi NA, Ben-Salem S, Hertecant J, John A, Pramathan T, Kizhakkedath P, Ali BR, Al-Gazali L (2016) A homozygous splicing mutation in ELAC2 suggests phenotypic variability including intellectual disability with minimal cardiac involvement. Orphanet J Rare Dis 11:139. (PMID: 27769300507385310.1186/s13023-016-0526-8)
      Altman S, Kirsebom L, Talbot S (1993) Recent Studies of Ribonuclease-P. FASEB J 7:7–14. (PMID: 791670010.1096/fasebj.7.1.7916700)
      Bartkiewicz M, Gold H, Altman S (1989) Identification and characterization of an RNA molecule that copurifies with RNase P activity from HeLa cells. Genes Dev 3:488–499. (PMID: 247064410.1101/gad.3.4.488)
      Bhatta A, Dienemann C, Cramer P, Hillen HS (2021) Structural basis of RNA processing by human mitochondrial RNase P. Nat Struct Mol Biol 28:713–723. (PMID: 34489609843780310.1038/s41594-021-00637-y)
      Bhatta A, Kuhle B, Yu RD, Spanaus L, Ditter K, Bohnsack KE, Hillen HS (2024) Molecular basis of human nuclear and mitochondrial tRNA 3’-processing. Preprint at https://doi.org/10.1101/2024.04.04.588063.
      Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP (2011) Involvement of human ELAC2 gene product in 3’ end processing of mitochondrial tRNAs. RNA Biol 8:616–626. (PMID: 2159360710.4161/rna.8.4.15393)
      Cafournet C, Zanin S, Guimier A, Hully M, Assouline Z, Barcia G, de Lonlay P, Steffann J, Munnich A, Bonnefont J-P et al (2023) Novel ELAC2 mutations in individuals presenting with variably severe neurological disease in the presence or absence of cardiomyopathy. Life 13:445. (PMID: 36836802995899110.3390/life13020445)
      Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr Sect Struct Biol 74:519–530. (PMID: 10.1107/S2059798318002425)
      Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet TIG 23:614–622. (PMID: 1797761410.1016/j.tig.2007.09.001)
      Diedrich K, Krause B, Berg O, Rarey M (2023) PoseEdit: enhanced ligand binding mode communication by interactive 2D diagrams. J Comput Aided Mol Des 37:491–503. (PMID: 375157141044027210.1007/s10822-023-00522-4)
      Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. (PMID: 20383002285231310.1107/S0907444910007493)
      Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C (2012) Structure of transfer RNAs: similarity and variability. Wiley Interdiscip Rev RNA 3:37–61. (PMID: 2195705410.1002/wrna.103)
      Haack TB, Kopajtich R, Freisinger P, Wieland T, Rorbach J, Nicholls TJ, Baruffini E, Walther A, Danhauser K, Zimmermann FA et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211–223. (PMID: 23849775373882110.1016/j.ajhg.2013.06.006)
      He J, Li T, Huang S-Y (2023) Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat Commun 14:3217. (PMID: 372706351023947410.1038/s41467-023-39031-1)
      Helm M, Brulé H, Friede D, Giegé R, Pütz D, Florentz C (2000) Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6:1356–1379. (PMID: 11073213137000810.1017/S1355838200001047)
      Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474. (PMID: 1898415810.1016/j.cell.2008.09.013)
      Jakobi AJ, Wilmanns M, Sachse C (2017) Model-based local density sharpening of cryo-EM maps. eLife 6:e27131. (PMID: 29058676567975810.7554/eLife.27131)
      Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. (PMID: 34265844837160510.1038/s41586-021-03819-2)
      Kimanius D, Jamali K, Wilkinson ME, Lövestam S, Velazhahan V, Nakane T, Scheres SHW (2024) Data-driven regularisation lowers the size barrier of cryo-EM structure determination. Nat Methods 21:1216–1221.
      Levinger L, Jacobs O, James M (2001) In vitro 3’-end endonucleolytic processing defect in a human mitochondrial tRNA(Ser(UCN)) precursor with the U7445C substitution, which causes non-syndromic deafness. Nucleic Acids Res 29:4334–4340. (PMID: 116919206018210.1093/nar/29.21.4334)
      Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect Struct Biol 75:861–877. (PMID: 10.1107/S2059798319011471)
      Lopez Sanchez MIG, Mercer TR, Davies SMK, Shearwood A-MJ, Nygård KKA, Richman TR, Mattick JS, Rackham O, Filipovska A (2011) RNA processing in human mitochondria. Cell Cycle 10:2904–2916. (PMID: 10.4161/cc.10.17.17060)
      Meynier V, Hardwick SW, Catala M, Roske JJ, Oerum S, Chirgadze DY, Barraud P, Yue WW, Luisi BF, Tisné C (2024) Structural basis for human mitochondrial tRNA maturation. Nat Commun 15:4683. (PMID: 388241311114419610.1038/s41467-024-49132-0)
      Mohan A, Whyte S, Wang X, Nashimoto M, Levinger L (1999) The 3’ end CCA of mature tRNA is an antideterminant for eukaryotic 3’-tRNase. RNA 5:245–256. (PMID: 10024176136975610.1017/S1355838299981256)
      Nashimoto M (1997) Distribution of both lengths and 5′ terminal nucleotides of mammalian Pre-tRNA 3′ trailers reflects properties of 3′ processing endoribonuclease. Nucleic Acids Res 25:1148–1154. (PMID: 909262314655510.1093/nar/25.6.1148)
      Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474. (PMID: 721953610.1038/290470a0)
      Paucar M, Pajak A, Freyer C, Bergendal Å, Döry M, Laffita-Mesa JM, Stranneheim H, Lagerstedt-Robinson K, Savitcheva I, Walker RH et al (2018) Chorea, psychosis, acanthocytosis, and prolonged survival associated with ELAC2 mutations. Neurology 91:710–712. (PMID: 30217939617727710.1212/WNL.0000000000006320)
      Pellegrini O, Li de la Sierra-Gallay I, Piton J, Gilet L, Condon C (2012) Activation of tRNA maturation by downstream uracil residues in B. subtilis. Struct Lond Engl 1993 20:1769–1777.
      Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30:70–82.
      Punjani A, Fleet DJ (2021) 3D Variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J Struct Biol 213:107702.
      Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. (PMID: 2816547310.1038/nmeth.4169)
      Rackham O, Busch JD, Matic S, Siira SJ, Kuznetsova I, Atanassov I, Ermer JA, Shearwood A-MJ, Richman TR, Stewart JB et al (2016) Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep 16:1874–1890. (PMID: 2749886610.1016/j.celrep.2016.07.031)
      Reinhard L, Sridhara S, Hällberg BM (2015) Structure of the nuclease subunit of human mitochondrial RNase P. Nucleic Acids Res 43:5664–5672. (PMID: 25953853447767610.1093/nar/gkv481)
      Reinhard L, Sridhara S, Hällberg BM (2017) The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 45:12469–12480. (PMID: 29040705571615610.1093/nar/gkx902)
      Rossmanith W (2011) Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation. PLoS ONE 6:e19152. (PMID: 21559454308475310.1371/journal.pone.0019152)
      Rossmanith W, Tullo A, Potuschak T, Karwan R, Sbis E (1995) Human mitochondrial tRNA processing (∗). J Biol Chem 270:12885–12891. (PMID: 775954710.1074/jbc.270.21.12885)
      Saoura M, Powell CA, Kopajtich R, Alahmad A, AL-Balool HH, Albash B, Alfadhel M, Alston CL, Bertini E, Bonnen PE et al (2019) Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3′-end processing. Hum Mutat 40:1731–1748. (PMID: 31045291676488610.1002/humu.23777)
      Scheres SHW (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406–418. (PMID: 22100448331496410.1016/j.jmb.2011.11.010)
      Schöning-Stierand K, Diedrich K, Ehrt C, Flachsenberg F, Graef J, Sieg J, Penner P, Poppinga M, Ungethüm A, Rarey M (2022) ProteinsPlus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res 50:W611–W615. (PMID: 35489057925276210.1093/nar/gkac305)
      Siira SJ, Rossetti G, Richman TR, Perks K, Ermer JA, Kuznetsova I, Hughes L, Shearwood AJ, Viola HM, Hool LC et al (2018) Concerted regulation of mitochondrial and nuclear non‐coding RNAs by a dual‐targeted RNase Z. EMBO Rep 19:e46198. (PMID: 30126926617245910.15252/embr.201846198)
      Sridhara S (2024) Multiple structural flavors of RNase P in precursor tRNA processing. WIREs RNA 15:e1835. (PMID: 3847980210.1002/wrna.1835)
      Takahashi M, Takaku H, Nashimoto M (2008) Regulation of the human tRNase ZS gene expression. FEBS Lett 582:2532–2536. (PMID: 1857325310.1016/j.febslet.2008.06.020)
      Tan YZ, Baldwin PR, Davis JH, Williamson JR, Potter CS, Carragher B, Lyumkis D (2017) Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Methods 14:793–796. (PMID: 28671674553364910.1038/nmeth.4347)
      Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16:1146–1152. (PMID: 31591575685886810.1038/s41592-019-0580-y)
      Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W (2012) A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase-extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res 40:11583–11593. (PMID: 23042678352628510.1093/nar/gks910)
      Vilardo E, Rossmanith W (2015) Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res 43:5112–5119. (PMID: 25925575444644610.1093/nar/gkv408)
      Vilardo E, Toth U, Hazisllari E, Hartmann RK, Rossmanith W (2023) Cleavage kinetics of human mitochondrial RNase P and contribution of its non-nuclease subunits. Nucleic Acids Res 51:10536–10550. (PMID: 377790951060286510.1093/nar/gkad713)
      Vogel A, Schilling O, Späth B, Marchfelder A (2005) The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties. Biol Chem 386:1253–1264. (PMID: 1633611910.1515/BC.2005.142)
      Wakita K, Watanabe Y, Yokogawa T, Kumazawa Y, Nakamura S, Ueda T, Watanabe K, Nishikawa K (1994) Higher-order structure of bovine mitochondrial tRNA(Phe) lacking the ‘conserved’ GG and T psi CG sequences as inferred by enzymatic and chemical probing. Nucleic Acids Res 22:347–353. (PMID: 751039052358710.1093/nar/22.3.347)
      Watanabe K (2010) Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:11–39. (PMID: 20075606341756710.2183/pjab.86.11)
      Wedatilake Y, Niazi R, Fassone E, Powell CA, Pearce S, Plagnol V, Saldanha JW, Kleta R, Chong WK, Footitt E et al (2016) TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J Rare Dis 11:90. (PMID: 27370603493060810.1186/s13023-016-0477-0)
    • Grant Information:
      2017.0080 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation); 2018.0080 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation); 2018-03808 Vetenskapsrådet (VR); 2022-02326 Vetenskapsrådet (VR)
    • Contributed Indexing:
      Keywords: Cryo-EM; ELAC2; Mitochondria; RNA Processing; RNase Z
    • الرقم المعرف:
      EC 3.1.- (Endoribonucleases)
      0 (ELAC2 protein, human)
      0 (Mitochondrial Proteins)
      EC 2.1.1.- (TRMT10c protein, human)
      0 (RNA, Transfer, His)
      EC 3.1.- (RNase Z)
      9014-25-9 (RNA, Transfer)
      0 (RNA, Mitochondrial)
      EC 2.1.1.- (Methyltransferases)
      0 (Neoplasm Proteins)
    • الموضوع:
      Date Created: 20241108 Date Completed: 20241216 Latest Revision: 20250117
    • الموضوع:
      20250129
    • الرقم المعرف:
      PMC11649783
    • الرقم المعرف:
      10.1038/s44318-024-00297-w
    • الرقم المعرف:
      39516281