References: Koirala, A., Joo, Y. J., Khatami, A., Chiu, C. & Britton, P. N. Vaccines for COVID-19: the current state of play. Paediatr. Respir. Rev. 35, 43–49 (2020). (PMID: 326534637301825)
Funk, C. D., Laferrière, C. & Ardakani, A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front. Pharmacol. 11, 937 (2020). (PMID: 10.3389/fphar.2020.00937326367547317023)
Lurie, N., Saville, M., Hatchett, R. & Halton, J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med. 382(21), 1969–1973 (2020). (PMID: 10.1056/NEJMp200563032227757)
Carneiro, D. C., Sousa, J. D. & Monteiro-Cunha, J. P. The COVID-19 vaccine development: A pandemic paradigm. Virus Res. 301, 198454 (2021). (PMID: 10.1016/j.virusres.2021.19845434015363)
Yamey, G. et al. It is not. too late to achieve global covid-19 vaccine equity. BMJ 376, o812 (2022).
Krishtel, P. & Hassan, F. Share Vaccine Know-How 379 (American Association for the Advancement of Science, 2021).
Friede, M. et al. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: Supporting developing country production capacity through technology transfer. Vaccine 29, A2–A7 (2011).
Bown, C. P. & Bollyky, T. J. How COVID-19 vaccine supply chains emerged in the midst of a pandemic. World Econ. 45(2), 468–522 (2022).
Fonseca, E. M. D., Shadlen, K. C. & Achcar, H. M. Vaccine technology transfer in a global health crisis: Actors, capabilities, and institutions. Res. Policy 52(4), 104739 (2023).
Forman, R., Shah, S., Jeurissen, P., Jit, M. & Mossialos, E. COVID-19 vaccine challenges: What have we learned so far and what remains to be done? Health Policy 125(5), 553–567 (2021). (PMID: 10.1016/j.healthpol.2021.03.013)
Maslehat, S., Doroud, D. & Mostafavi, E. A leading institute in the production and development of vaccines in Iran. Vacres 6(1), 33–42 (2019). (PMID: 10.29252/vacres.6.1.33)
Optimism as Cuba set to test its own Covid vaccine [Internet]. BBC News. https://www.bbc.com/news/world-latin-america-56069577 (2023).
Mostafavi, E. et al. Efficacy and safety of a protein-based SARS-CoV-2 vaccine: A randomized clinical trial. JAMA Netw. Open. 6(5), e2310302 (2023). (PMID: 10.1001/jamanetworkopen.2023.103023713386410157429)
Pérez-Rodríguez, S. et al. A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: Safety, reactogenicity and immunogenicity. Vaccine 40(13), 2068–2075 (2022). (PMID: 10.1016/j.vaccine.2022.02.029351649868823954)
Toledo-Romani, M. E. et al. Safety and immunogenicity of anti-SARS-CoV-2 heterologous scheme with SOBERANA 02 and SOBERANA Plus vaccines: Phase IIb clinical trial in adults. Med. (New York NY) 3(11), 760–773 (2022).
Ghanei, M. et al. Exploring the experience of developing COVID-19 vaccines in Iran. Clin. Exp. Vacc. Res. 12(1), 1–12 (2023). (PMID: 10.7774/cevr.2023.12.1.1)
Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807), 221–224 (2020).
Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807), 215–220 (2020). (PMID: 10.1038/s41586-020-2180-532225176)
Krammer, F. SARS-CoV-2 vaccines in development. Nature 586(7830), 516–527 (2020).
Valdes-Balbin, Y. et al. Molecular aspects concerning the use of the SARS-CoV-2 receptor binding domain as a target for preventive vaccines. ACS Cent. Sci. 7(5), 757–767 (2021). (PMID: 10.1021/acscentsci.1c00216340753458084267)
Zang, J. et al. Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell. Discov. 6(1), 61 (2020).
Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Sci. (New York NY) 369(6504), 643–650 (2020). (PMID: 10.1126/science.abc5902)
Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Sci. (New York NY) 369(6506), 956–963 (2020). (PMID: 10.1126/science.abc7520)
Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584(7821), 443–449 (2020). (PMID: 10.1038/s41586-020-2548-6326684437584396)
Rutten, L. et al. Impact of SARS-CoV-2 spike stability and RBD exposure on antigenicity and immunogenicity. Sci. Rep. 14(1), 5735 (2024). (PMID: 10.1038/s41598-024-56293-x3845908610923862)
http://www.emea.eu.int/pdfs/human/bwp/320702en.pdf . https://www.ema.europa.eu/en/documents/scientific-guideline/comparability-medicinal-products-containing-biotechnology-derived-proteins-active-substance-quality/ich/5721/03_en.pdf (2003).
http://www.emea.eu.int/pdfs/human/bwp/320700en.pdf . https://www.ema.europa.eu/en/documents/scientific-guideline/comparability-medicinal-products-containing-biotechnology-derived-proteins-active-substance-quality/ich/5721/03_en.pdf (2003).
Alasandro, M. et al. Meeting report: Vaccine stability considerations to enable rapid development and deployment. AAPS Open. 7(1), 6 (2021). (PMID: 10.1186/s41120-021-00042-1348698308632204)
Usach, I., Martinez, R., Festini, T. & Peris, J-E. Subcutaneous injection of drugs: Literature review of factors influencing pain sensation at the injection site. Adv. Therapy 36(11), 2986–2996 (2019).
Farahmand, B. et al. Evaluation of PastoCovac plus vaccine as a booster dose on vaccinated individuals with inactivated COVID-19 vaccine. Heliyon 9(10), e20555 (2023).
Ramezani, A. et al. PastoCovac and PastoCovac Plus as protein subunit COVID-19 vaccines led to great humoral immune responses in BBIP-CorV immunized individuals. Sci. Rep. 13(1), 8065 (2023).
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020). (PMID: 10.1371/journal.pbio.3000411326632217360025)
Valdes-Balbin, Y. et al. Molecular aspects concerning the use of the SARS-CoV-2 receptor binding domain as a target for preventive vaccines. ACS Central Sci. 7(5), 757–767 (2021).
Chang-Monteagudo, A. et al. A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial. Lancet Reg. Health Am. 2021(4), 100079 (2021).
Santana-Mederos, D. et al. A COVID-19 vaccine candidate composed of the SARS-CoV-2 RBD dimer and Neisseria meningitidis outer membrane vesicles. RSC Chem. Biol.. 3(2), 242–249 (2022). (PMID: 10.1039/D1CB00200G35360883)
Hassan, P. M. et al. Potency, toxicity and protection evaluation of PastoCoAd candidate vaccines: Novel preclinical mix and match rAd5 S, rAd5 RBD-N and SOBERANA dimeric-RBD protein. Vaccine 40(20), 2856–2868 (2022). (PMID: 10.1016/j.vaccine.2022.03.06635393148)
Pichichero, M. E. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum. Vacc. Immunother. 9(12), 2505–2523 (2013). (PMID: 10.4161/hv.26109)
Chang-Monteagudo, A. et al. A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial. Lancet Reg. Health Am. 4, 100079 (2021). (PMID: 345415718442527)
Ochoa-Azze, R. et al. Safety and immunogenicity of the FINLAY-FR-1A vaccine in COVID-19 convalescent participants: an open-label phase 2a and double-blind, randomised, placebo-controlled, phase 2b, seamless, clinical trial. Lancet Respiratory Med. 10(8), 785–795 (2022). (PMID: 10.1016/S2213-2600(22)00100-X)
Toledo-Romaní, M. E. et al. Safety and efficacy of the two doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a heterologous three-dose combination with SOBERANA-Plus: a double-blind, randomised, placebo-controlled phase 3 clinical trial. Lancet Reg. Health Americas 2033, 45 (2023).
Annex 3 Guidelines on stability evaluation of vaccines. WHO Expert Committee on Biological Standardization (2011).
Interim recommendations for use of the ChAdOx1-S. [recombinant] vaccine against COVID-19 (AstraZeneca COVID-19 vaccine AZD1222 Vaxzevria™, SII COVISHIELD™) [Internet]. World Health Organization. https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-AZD1222-2021.1 (2023).
No Comments.