Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Regulation of neutrophil associated RNASET2 expression in rheumatoid arthritis.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Passari M;Passari M; Scutera S; Scutera S; Schioppa T; Schioppa T; Schioppa T; Tiberio L; Tiberio L; Piantoni S; Piantoni S; Tamassia N; Tamassia N; Bugatti M; Bugatti M; Vermi W; Vermi W; Angeli F; Angeli F; Caproli A; Caproli A; Salvi V; Salvi V; Sozio F; Sozio F; Gismondi A; Gismondi A; Stabile H; Stabile H; Franceschini F; Franceschini F; Bosisio D; Bosisio D; Acquati F; Acquati F; Vermeren S; Vermeren S; Sozzani S; Sozzani S; Andreoli L; Andreoli L; Del Prete A; Del Prete A; Del Prete A; Musso T; Musso T
- المصدر:
Scientific reports [Sci Rep] 2024 Nov 05; Vol. 14 (1), pp. 26820. Date of Electronic Publication: 2024 Nov 05.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع: Arthritis, Rheumatoid*/genetics ; Arthritis, Rheumatoid*/metabolism ; Arthritis, Rheumatoid*/pathology ; Neutrophils*/metabolism ; Extracellular Traps*/metabolism; Humans ; Animals ; Mice ; Male ; Ribonucleases/metabolism ; Ribonucleases/genetics ; Female ; Arthritis, Experimental/genetics ; Arthritis, Experimental/metabolism ; Arthritis, Experimental/pathology ; Macrophages/metabolism ; Disease Models, Animal ; Gene Expression Regulation ; Tumor Suppressor Proteins
- نبذة مختصرة : Neutrophils (PMNs) are key players of innate immune responses through the release of cytoplasmic granule content and the formation of neutrophil extracellular traps (NETs). RNASET2 is an acidic ribonuclease, recently proposed as an alarmin signal associated with inflammatory responses. Here we show that, along the neutrophil maturation cascade, RNASET2 is expressed in segmented and mature PMNs. In human PMNs, RNASET2 colocalized with primary and tertiary granules and was found to be associated with NETs following PMA or Nigericin stimulation. Similarly, activation of PMNs by soluble immune complexes, a hallmark of several autoimmune diseases, also induced RNASET2-associated NETs. Genome-wide association studies recently identified RNASET2 among a cluster of genes associated with increased susceptibility to develop autoimmune diseases, including rheumatoid arthritis (RA). RNASET2 was found expressed by PMNs and macrophages infiltrating inflamed joints in a murine model of RA (K/BxN Serum-Transfer-Induced Arthritis, STIA), by immunostaining. Similar results were found in synovial biopsies of RA patients with active disease. In addition, we demonstrate that RNASET2 circulating levels correlated with the onset and the severity of disease in two mouse models of inflammatory arthritis, STIA and CIA (Collagen-Induced Arthritis) and in serum of RA patients. These results show that PMNs are an important source of RNASET2 and that its circulating levels are associated with RA development suggesting a role for RNASET2 in the pathogenesis of immune-mediated diseases.
(© 2024. The Author(s).) - Comments: Erratum in: Sci Rep. 2024 Nov 19;14(1):28610. doi: 10.1038/s41598-024-79660-0. (PMID: 39562651)
- References: Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011). (PMID: 2178545610.1038/nri3024)
Soehnlein, O., Steffens, S., Hidalgo, A. & Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017). (PMID: 2828710610.1038/nri.2017.10)
Othman, A., Sekheri, M. & Filep, J. G. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J. 289, 3932–3953 (2022). (PMID: 3368381410.1111/febs.15803)
Kenny, E. F. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife, 6 (2017).
Song, W., Ye, J., Pan, N., Tan, C. & Herrmann, M. Neutrophil Extracellular traps tied to rheumatoid arthritis: Points to Ponder. Front. Immunol. 11, 578129 (2020). (PMID: 3358464510.3389/fimmu.2020.578129)
Luhtala, N. & Parker, R. T2 family ribonucleases: Ancient enzymes with diverse roles. Trends Biochem. Sci. 35, 253–259 (2010). (PMID: 20189811288847910.1016/j.tibs.2010.02.002)
Lu, L., Li, J., Moussaoui, M. & Boix, E. Immune modulation by human secreted RNases at the extracellular space. Front. Immunol. 9, 1012 (2018). (PMID: 29867984596414110.3389/fimmu.2018.01012)
Wang, Q. et al. Stress-induced RNASET2 overexpression mediates melanocyte apoptosis via the TRAF2 pathway in vitro. Cell. Death Dis. 5, e1022 (2014). (PMID: 24457966404070610.1038/cddis.2013.539)
Theisen, D. J. et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 362, 694–699 (2018). (PMID: 30409884665555110.1126/science.aat5030)
Baranzini, N. et al. AIF-1 and RNASET2 play complementary roles in the Innate Immune response of Medicinal Leech. J. Innate Immun. 11, 150–167 (2019). (PMID: 3036850510.1159/000493804)
Gonsky, R. et al. Association of ribonuclease T2 gene polymorphisms with decreased expression and clinical characteristics of severity in Crohn’s disease, Gastroenterology,153, 219–232. (2017).
Schwartz, B. et al. A T2 RNase, competes with angiogenin and inhibits human melanoma growth, angiogenesis, and metastasis. Cancer Res. 67, 5258–5266 (2007). (PMID: 1754560510.1158/0008-5472.CAN-07-0129)
Monaco, G. et al. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune Cell types. Cell. Rep. 26, 1627–1640e1627 (2019). (PMID: 30726743636756810.1016/j.celrep.2019.01.041)
Jin, Y. et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat. Genet. 48, 1418–1424 (2016). (PMID: 27723757512075810.1038/ng.3680)
Zhu, H. et al. Gene-based genome-wide association analysis in european and asian populations identified novel genes for rheumatoid arthritis. PLoS One. 11, e0167212 (2016). (PMID: 27898717512756310.1371/journal.pone.0167212)
Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601 (2014). (PMID: 2491469810.1038/nrrheum.2014.80)
Del Prete, A. et al. The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood. 130, 1223–1234 (2017). (PMID: 2874371910.1182/blood-2017-04-777680)
Crockett-Torabi, E. & Fantone, J. C. Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct fc gamma receptor-specific mechanisms. J. Immunol. 145, 3026–3032 (1990). (PMID: 217053010.4049/jimmunol.145.9.3026)
Fossati, G., Bucknall, R. C. & Edwards, S. W. Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: Changes in functional responses induced by priming with cytokines. Ann. Rheum. Dis. 61, 13–19 (2002). (PMID: 11779751175388910.1136/ard.61.1.13)
Calzetti, F. et al. CD66b. Nat. Immunol. 23, 679–691 (2022). (PMID: 3548440810.1038/s41590-022-01189-z)
Zhang, L., Yuan, Y., Xu, Q., Jiang, Z. & Chu, C. Q. Contribution of neutrophils in the pathogenesis of rheumatoid arthritis. J. Biomed. Res. 34, 86–93 (2019). (PMID: 3230596210.7555/JBR.33.20190075)
Bonaventura, A. et al. The pathophysiological role of Neutrophil Extracellular traps in Inflammatory diseases. Thromb. Haemost. 118, 6–27 (2018). (PMID: 2930452210.1160/TH17-09-0630)
Hentze, H., Lin, X. Y., Choi, M. S. & Porter, A. G. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell. Death Differ. 10, 956–968 (2003). (PMID: 1293407010.1038/sj.cdd.4401264)
Gritsenko, A. et al. Lopez-Castejon, Priming is dispensable for NLRP3 inflammasome activation in human monocytes. Front. Immunol. 11, 565924 (2020). (PMID: 33101286755543010.3389/fimmu.2020.565924)
Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020). (PMID: 32371889720074910.1038/s41467-020-16043-9)
Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 119, 5640–5649 (2012). (PMID: 2253566610.1182/blood-2012-01-380121)
Behnen, M. et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J. Immunol. 193, 1954–1965 (2014). (PMID: 2502437810.4049/jimmunol.1400478)
Karmakar, U. et al. Immune complex-induced apoptosis and concurrent immune complex clearance are anti-inflammatory neutrophil functions. Cell. Death Dis. 12, 296 (2021). (PMID: 33741905797971110.1038/s41419-021-03528-8)
Jakus, Z., Németh, T., Verbeek, J. S. & Mócsai, A. Critical but overlapping role of FcgammaRIII and FcgammaRIV in activation of murine neutrophils by immobilized immune complexes. J. Immunol. 180, 618–629 (2008). (PMID: 1809706410.4049/jimmunol.180.1.618)
Vermeren, S., Karmakar, U. & Rossi, A. G. Immune complex-induced neutrophil functions: A focus on cell death. Eur. J. Clin. Invest. 48 (Suppl 2), e12948 (2018). (PMID: 2973451910.1111/eci.12948)
Fossati, G., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Differential role of neutrophil fcgamma receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis Rheum. 46, 1351–1361 (2002). (PMID: 1211524310.1002/art.10230)
Carmona-Rivera, C. et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight, 5 (2020).
Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001). (PMID: 1146638210.4049/jimmunol.167.3.1601)
Monach, P. A., Mathis, D. & Benoist, C. The K/BxN arthritis model. Curr. Protoc. Immunol. Chap 15 (2008). 15.22.11–15.22.12.
Brand, D. D., Latham, K. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007). (PMID: 1754602310.1038/nprot.2007.173)
Grassi, L. et al. Kuijpers, Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell. Rep. 24, 2784–2794 (2018). (PMID: 30184510632633110.1016/j.celrep.2018.08.018)
Greulich, W. et al. TLR8 Is a Sensor of RNase T2 Degradation Products, Cell, 179 1264–1275.e1213. (2019).
Gardiman, E. et al. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion11 (Cells, 2022).
Rørvig, S., Østergaard, O., Heegaard, N. H. & Borregaard, N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: Correlation with transcriptome profiling of neutrophil precursors. J. Leukoc. Biol. 94, 711–721 (2013). (PMID: 2365062010.1189/jlb.1212619)
Corsiero, E., Pratesi, F., Prediletto, E., Bombardieri, M. & Migliorini, P. NETosis as source of autoantigens in Rheumatoid Arthritis. Front. Immunol. 7, 485 (2016). (PMID: 27895639510806310.3389/fimmu.2016.00485)
Berthelot, J. M., Le Goff, B., Neel, A., Maugars, Y. & Hamidou, M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint Bone Spine. 84, 255–262 (2017). (PMID: 2742644410.1016/j.jbspin.2016.05.013)
Sofoluwe, A., Bacchetta, M., Badaoui, M., Kwak, B. R. & Chanson, M. ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Sci. Rep. 9, 16556 (2019). (PMID: 31719610685111210.1038/s41598-019-53058-9)
Rosazza, T., Warner, J. & Sollberger, G. NET formation - mechanisms and how they relate to other cell death pathways. FEBS J. 288, 3334–3350 (2021). (PMID: 3304749610.1111/febs.15589)
Leung, H. H. L. et al. Inhibition of NADPH oxidase blocks NETosis and reduces thrombosis in heparin-induced thrombocytopenia. Blood Adv. 5, 5439–5451 (2021). (PMID: 34478504915302810.1182/bloodadvances.2020003093)
Tapia, V. S. et al. The three cytokines IL-1β, IL-18, and IL-1α share related but distinct secretory routes. J. Biol. Chem. 294, 8325–8335 (2019). (PMID: 30940725654484510.1074/jbc.RA119.008009)
Petretto, A. et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 14, e0218946 (2019). (PMID: 31283757661369610.1371/journal.pone.0218946)
Sprenkeler, E. G. G. et al. S100A8/A9 Is a Marker for the Release of Neutrophil Extracellular Traps and Induces Neutrophil Activation, Cells, 11 (2022).
Suzuki, Y. et al. Pre-existing glomerular immune complexes induce polymorphonuclear cell recruitment through an fc receptor-dependent respiratory burst: Potential role in the perpetuation of immune nephritis. J. Immunol. 170, 3243–3253 (2003). (PMID: 1262658310.4049/jimmunol.170.6.3243)
Matsumoto, I. et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat. Immunol. 3, 360–365 (2002). (PMID: 1189639110.1038/ni772)
Alemán, O. R., Mora, N., Cortes-Vieyra, R., Uribe-Querol, E. & Rosales, C. Transforming growth Factor-β-Activated kinase 1 is required for Human FcγRIIIb-Induced Neutrophil Extracellular trap formation. Front. Immunol. 7, 277 (2016). (PMID: 27486461494787010.3389/fimmu.2016.00277)
Gallo, D. et al. A potential role of human RNASET2 overexpression in the pathogenesis of Graves’ disease. Endocrine. 79, 55–59 (2023). (PMID: 3618075810.1007/s12020-022-03207-4)
Pandolfi, F. et al. Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci., 21 (2020).
Bhamidipati, K. & Wei, K. Precision medicine in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 36, 101742 (2022). (PMID: 35248489897725110.1016/j.berh.2022.101742)
Najm, A. et al. EULAR points to consider for minimal reporting requirements in synovial tissue research in rheumatology. Ann. Rheum. Dis. 81, 1640–1646 (2022). (PMID: 3521026310.1136/annrheumdis-2021-221875)
Orr, C. et al. Synovial tissue research: A state-of-the-art review. Nat. Rev. Rheumatol. 13, 463–475 (2017). (PMID: 2870176010.1038/nrrheum.2017.115)
Baranzini, N. et al. Antimicrobial role of RNASET2 protein during Innate Immune response in the Medicinal Leech. Front. Immunol. 11, 370 (2020). (PMID: 32210967706881510.3389/fimmu.2020.00370)
Prevoo, M. L. et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 38, 44–48 (1995). (PMID: 781857010.1002/art.1780380107) - Grant Information: PRIN2017 No. NTK4HY Ministero dell'Università e della Ricerca; PRIN2017 No. NTK4HY Ministero dell'Università e della Ricerca; PNRR-European Union PE08 Age-It Ministero dell'Università e della Ricerca; PRIN2017 No. NTK4HY Ministero dell'Università e della Ricerca; PRIN2017 No. NTK4HY Ministero dell'Università e della Ricerca
- الرقم المعرف: EC 3.1.27.- (RNASET2 protein, human)
EC 3.1.- (Ribonucleases)
0 (Tumor Suppressor Proteins) - الموضوع: Date Created: 20241105 Date Completed: 20241105 Latest Revision: 20241120
- الموضوع: 20241120
- الرقم المعرف: PMC11538310
- الرقم المعرف: 10.1038/s41598-024-77694-y
- الرقم المعرف: 39500942
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.