References: Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23, 186–193 (2022). (PMID: 10.1038/s41590-021-01122-w35105982)
Sette, A., Sidney, J. & Crotty, S. T cell responses to SARS-CoV-2. Annu. Rev. Immunol. 41, 343–373 (2023). (PMID: 10.1146/annurev-immunol-101721-06112036750314)
Wang, X. et al. Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response. Nat. Commun. 14, 3440 (2023). (PMID: 10.1038/s41467-023-39096-y3730191010257169)
Huot, N. et al. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat. Immunol. 24, 2068–2079 (2023). (PMID: 10.1038/s41590-023-01661-43791952410681903)
Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847-859.e811 (2022). (PMID: 10.1016/j.cell.2022.01.015351393408784649)
Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2, 100355 (2021). (PMID: 10.1016/j.xcrm.2021.100355342309178249675)
Loyal, L. et al. Cross-reactive CD4(+) T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 374, eabh1823 (2021). (PMID: 10.1126/science.abh18233446563310026850)
Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587, 270–274 (2020). (PMID: 10.1038/s41586-020-2598-932726801)
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489-1501.e1415 (2020). (PMID: 10.1016/j.cell.2020.05.015324731277237901)
Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94 (2020). (PMID: 10.1126/science.abd3871327535547574914)
Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020). (PMID: 10.1038/s41586-020-2550-z32668444)
Shimizu, J. et al. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci. Rep. 12, 15612 (2022). (PMID: 10.1038/s41598-022-19993-w361142249481526)
Shimizu, J. et al. The potential of COVID-19 patients’ sera to cause antibody-dependent enhancement of infection and IL-6 production. Sci. Rep. 11, 23713 (2021). (PMID: 10.1038/s41598-021-03273-0348875018660863)
Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014). (PMID: 10.1146/annurev-immunol-032713-120231245554724313732)
Busnadiego I, et al. Antiviral activity of type I, II, and III interferons counterbalances ACE2 inducibility and restricts SARS-CoV-2. mBio 11, (2020).
Schoggins, J. W. Interferon-stimulated genes: what do they all do?. Annu. Rev. Virol. 6, 567–584 (2019). (PMID: 10.1146/annurev-virology-092818-01575631283436)
Saleiro D, et al. IFN-γ-inducible antiviral responses require ULK1-mediated activation of MLK3 and ERK5. Sci. Signal 11, (2018).
Rydyznski Moderbacher C, et al. NVX-CoV2373 vaccination induces functional SARS-CoV-2-specific CD4 + and CD8 + T cell responses. J. Clin. Investig. 132, (2022).
Barreiro, P. et al. A pilot study for the evaluation of an interferon gamma release assay (IGRA) to measure T-cell immune responses after SARS-CoV-2 infection or vaccination in a unique cloistered cohort. J. Clin. Microbiol. 60, e0219921 (2022). (PMID: 10.1128/jcm.02199-2135020419)
Motozono, C. et al. The SARS-CoV-2 omicron BA.1 spike G446S mutation potentiates antiviral T-cell recognition. Nat. Commun. 13, 5440 (2022). (PMID: 10.1038/s41467-022-33068-4361309299492656)
Gil-Bescós R, et al. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci. Alliance. 6, (2023).
Krishna, B. A. et al. Spontaneous, persistent, T cell-dependent IFN-γ release in patients who progress to Long Covid. Sci. Adv. 10, eadi9379 (2024). (PMID: 10.1126/sciadv.adi93793838182210881041)
Lin, F. C. & Young, H. A. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 25, 369–376 (2014). (PMID: 10.1016/j.cytogfr.2014.07.015251564214182113)
Fensterl, V. & Sen, G. C. Interferons and viral infections. Biofactors 35, 14–20 (2009). (PMID: 10.1002/biof.619319841)
Park, A. & Iwasaki, A. Type I and Type III interferons—induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020). (PMID: 10.1016/j.chom.2020.05.008324640977255347)
Gudima, G., Kofiadi, I., Shilovskiy, I., Kudlay, D., Khaitov, M. Antiviral therapy of COVID-19. Int. J. Mol. Sci. 24, (2023).
Lokugamage KG, et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol. 94, (2020).
Vanderheiden A, et al. Type I and Type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. J. Virol. 94, (2020).
Kang, S., Brown, H. M. & Hwang, S. Direct antiviral mechanisms of interferon-gamma. Immune Netw. 18, e33 (2018). (PMID: 10.4110/in.2018.18.e33304023286215902)
Akamatsu, M. A., de Castro, J. T., Takano, C. Y. & Ho, P. L. Off balance: Interferons in COVID-19 lung infections. EBioMedicine 73, 103642 (2021). (PMID: 10.1016/j.ebiom.2021.103642346786098524139)
Yang, D. et al. Type-II IFN inhibits SARS-CoV-2 replication in human lung epithelial cells and ex vivo human lung tissues through indoleamine 2,3-dioxygenase-mediated pathways. J. Med. Virol. 96, e29472 (2024). (PMID: 10.1002/jmv.2947238373201)
Silva, B. J. A. et al. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front. Immunol. 14, 1284148 (2023). (PMID: 10.3389/fimmu.2023.12841483816265310755032)
Karki, R. et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184, 149-168.e117 (2021). (PMID: 10.1016/j.cell.2020.11.02533278357)
Sadanandam, A. et al. A blood transcriptome-based analysis of disease progression, immune regulation, and symptoms in coronavirus-infected patients. Cell Death Discov. 6, 141 (2020). (PMID: 10.1038/s41420-020-00376-x332935147721861)
Haruta, M. et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther. 20, 504–513 (2013). (PMID: 10.1038/gt.2012.5922875043)
Imamura, Y. et al. Generation of large numbers of antigen-expressing human dendritic cells using CD14-ML technology. PLoS One 11, e0152384 (2016). (PMID: 10.1371/journal.pone.0152384270505534822879)
Yamamoto, Y. et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 14, 1097–1106 (2017). (PMID: 10.1038/nmeth.444828967890)
No Comments.