Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Relationship between physical activity and abdominal obesity and metabolic markers in postmenopausal women.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      This study aimed to investigate the impact of physical activity indicators monitored by the POLAR accelerometer on body obesity indicators, metabolic syndrome parameters, and energy metabolism hormones in postmenopausal women. Was included 71 participants from this study program (68.8 ± 4.3 years). We divided participants into LPA and MVPA groups based on their level of moderate to vigorous physical activity per week; Physical activity levels over 7 days were assessed using a POLAR accelerometer, with daily step counts and sedentary time recorded. Measurements included waist circumference, visceral fat volume, body fat percentage, blood pressure, fasting blood glucose, triglyceride levels, HDL cholesterol, and energy metabolism hormone levels (leptin, resistin, adiponectin). The MVPA group displayed lower waist circumference, body fat percentage, abdominal fat, and BMI compared to the LPA group (p < 0.05). A significant negative correlation was observed between daily step count and obesity indicators, including waist circumference (r = -0.301), body fat percentage (r = -0.295), abdominal fat (r = -0.318), and BMI (r = -0.238). Conversely, sedentary time showed a positive correlation with obesity indicators such as waist circumference (r = 0.258), body fat percentage (r = 0.239), and abdominal fat (r = 0.244). Moreover, daily step count exhibited a significant negative correlation with leptin levels (r = -0.245), while sedentary time was positively correlated with the energy metabolic factor leptin (r = 0.279). Waist circumference demonstrated significant positive correlations with triglycerides, blood glucose, adiponectin, resistin, and leptin levels. Postmenopausal women who engage in at least 150 min of MVPA weekly show lower obesity indices. There is a significant correlation between physical activity levels and obesity indicators, which relate to metabolic syndrome and energy metabolism factors. Thus, increased physical activity may help prevent metabolic syndrome and cardiovascular diseases in this population.
      (© 2024. The Author(s).)
    • References:
      GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of Disease Study 2019. Lancet 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2 (2020). PMID: 33069327; PMCID: PMC7566194.
      Rodríguez-San Nicolás, A., SÁnchez-RodrÍguez, M. A., Zacarías-Flores, M., Correa-Muñoz, E. & Mendoza-Núñez, V. M. Relación entre la obesidad central y el estrés oxidativo en mujeres premenopáusicas versus posmenopáusicas [Relationship between central obesity and oxidative stress in premenopausal versus postmenopausal women]. Nutr Hosp. 37(2), 267–274 (2020). https://doi.org/10.20960/nh.02552 . PMID: 32054278.
      Varghese, M. et al. Female adipose tissue has improved adaptability and metabolic health compared to males in aged obesity. Aging (Albany NY) 12(2), 1725–1746. https://doi.org/10.18632/aging.102709 (2020). Epub 2020 Jan 26. PMID: 31983693; PMCID: PMC7053605. (PMID: 10.18632/aging.10270931983693)
      George, E. S., Rosenkranz, R. R. & Kolt, G. S. Chronic disease and sitting time in middle-aged Australian males: Findings from the 45 and Up Study. Int. J. Behav. Nutr. Phys. Act. 10, 20. https://doi.org/10.1186/1479-5868-10-20 (2013). PMID: 23394382; PMCID: PMC3571940. (PMID: 10.1186/1479-5868-10-20233943823571940)
      Stamatakis, E. et al. Are sitting occupations associated with increased all-cause, cancer, and cardiovascular disease mortality risk? A pooled analysis of seven British population cohorts. PLoS One 8(9), e73753. https://doi.org/10.1371/journal.pone.0073753 (2013). PMID: 24086292; PMCID: PMC3784430. (PMID: 10.1371/journal.pone.0073753240862923784430)
      Ostman, C. et al. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 16(1), 110. https://doi.org/10.1186/s12933-017-0590-y (2017). PMID: 28854979; PMCID: PMC5577843. (PMID: 10.1186/s12933-017-0590-y288549795577843)
      Alberti, K. G. et al. International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute;. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation.120(16),1640-5 (2009). https://doi.org/10.1161/CIRCULATIONAHA.109.192644 . Epub 2009 Oct 5. PMID: 19805654.
      Alberti, K. G. & Zimmet, P. Z. Should we dump the metabolic syndrome? No. BMJ. 336(7645), 641. https://doi.org/10.1136/bmj.39484.636586.94 (2008). PMID: 18356232; PMCID: PMC2270945. (PMID: 10.1136/bmj.39484.636586.94183562322270945)
      Nesto, R. W. The relation of insulin resistance syndromes to risk of cardiovascular disease. Rev. Cardiovasc. Med. 4(Suppl 6), S11-8. PMID: 14668699 (2003).
      Nayor, M. & Vasan, R. S. Preventing heart failure: The role of physical activity. Curr .Opin. Cardiol. 30(5), 543–50. https://doi.org/10.1097/HCO.0000000000000206 (2015).
      Hegde, S. M. et al. Cardiac structure and function and leisure-time physical activity in the elderly: The atherosclerosis risk in communities study. Eur. Heart J. 37(32), 2544–2551. https://doi.org/10.1093/eurheartj/ehw121 (2016). Epub 2016 Apr 12. PMID: 27071820; PMCID: PMC5008418. (PMID: 10.1093/eurheartj/ehw121270718205008418)
      Rolland, Y. M., Perry, H. M. 3rd, Patrick, P., Banks, W. A. & Morley, J. E. Leptin and adiponectin levels in middle-aged postmenopausal women: Associations with lifestyle habits, hormones, and inflammatory markers–a cross-sectional study. Metabolism 55(12), 1630-6 (2006). https://doi.org/10.1016/j.metabol.2006.07.026 . PMID: 17142136.
      Hopkins, M. & Blundell, J. E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. (Lond). 130(18), 1615-28 (2016). https://doi.org/10.1042/CS20160006 . PMID: 27503946.
      Reseland, J. E. et al. Cigarette smoking may reduce plasma leptin concentration via catecholamines. Prostaglandins Leukot Essent Fatty Acids. 73(1):43 – 9. (2005). https://doi.org/10.1016/j.plefa.2005.04.006 . PMID: 15964536.
      Aisike, G. et al. Correlation analysis of obesity phenotypes with leptin and adiponectin. Sci. Rep. 13(1), 17718. https://doi.org/10.1038/s41598-023-43550-8 (2023). PMID: 37853077; PMCID: PMC10584881. (PMID: 10.1038/s41598-023-43550-83785307710584881)
      Chen, B. H. et al. Circulating levels of resistin and risk of type 2 diabetes in men and women: Results from two prospective cohorts. Diabetes Care 32(2), 329–334. https://doi.org/10.2337/dc08-1625 (2009). Epub 2008 Oct 28. PMID: 18957529; PMCID: PMC2628703. (PMID: 10.2337/dc08-1625189575292628703)
      Momiyama, Y. et al. Serum resistin levels and cardiovascular events in patients undergoing percutaneous coronary intervention. J. Atheroscler Thromb. 18(2), 108–114. https://doi.org/10.5551/jat.6023 (2011). Epub 2010 Nov 6. PMID: 21071880. (PMID: 10.5551/jat.602321071880)
      Nguyen, T. M. D. & Adiponectin role in physiology and pathophysiology. Int. J. Prev. Med. 3(11), 136 (2020). https://doi.org/10.4103/ijpvm.IJPVM_193_20 .
      Hara, K. et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 29(6), 1357-62 (2006). https://doi.org/10.2337/dc05-1801 . PMID: 16732021.
      Abbenhardt, C. et al. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. J. Intern. Med. 274(2), 163 – 75. (2013). https://doi.org/10.1111/joim.12062 . Epub 2013 Mar 29. Erratum in: J Intern Med. 2014;276(4):418. PMID: 23432360; PMCID: PMC3738194.
      Abd El-Kader, S. M. & Al-Jiffri, O. H. Impact of aerobic versus resisted exercise training on systemic inflammation biomarkers and quality of life among obese post-menopausal women. Afr. Health Sci. 19(4), 2881–2891. https://doi.org/10.4314/ahs.v19i4.10 (2019). PMID: 32127864; PMCID: PMC7040316. (PMID: 10.4314/ahs.v19i4.10321278647040316)
      Blomquist, C. et al. Attenuated low-grade inflammation following long-term dietary intervention in postmenopausal women with obesity. Obesity (Silver Spring) 25(5):892–900 (2017). https://doi.org/10.1002/oby.21815 . PMID: 28440046.
      Chedraui, P. et al. Research group for the omega women’s health project. Angiogenesis, inflammation and endothelial function in postmenopausal women screened for the metabolic syndrome. Maturitas 77(4), 370–374 (2014). Epub 2014 Feb 7. PMID: 24598235. (PMID: 10.1016/j.maturitas.2014.01.01424598235)
      Macciò, A. & Madeddu, C. Obesity, inflammation, and postmenopausal breast cancer: Therapeutic implications. Sci. World J. 11, 2020–2036. https://doi.org/10.1100/2011/806787 (2011). Epub 2011 Oct 27. PMID: 22125453; PMCID: PMC3217612. (PMID: 10.1100/2011/806787)
      Phillips, M. D. et al. Resistance training reduces subclinical inflammation in obese, postmenopausal women. Med. Sci. Sports Exerc. 44(11), 2099–2110. https://doi.org/10.1249/MSS.0b013e3182644984 (2012). PMID: 22874536. (PMID: 10.1249/MSS.0b013e318264498422874536)
      Qureshi, R. et al. The major pre- and postmenopausal estrogens play opposing roles in obesity-driven mammary inflammation and breast cancer development. Cell Metab. 31(6), 1154–1172 (2020). https://doi.org/10.1016/j.cmet.2020.05.008 . PMID: 32492394.
      Sánchez-Delgado, J. C. et al. Physical exercise effects on cardiovascular autonomic modulation in postmenopausal women-a systematic review and meta-analysis. Int. J. Environ. Res. Public. Health 20(3), 2207. https://doi.org/10.3390/ijerph20032207 (2023). PMID: 36767574; PMCID: PMC9916307. (PMID: 10.3390/ijerph20032207367675749916307)
      Madeira, I. et al. Leptin as a predictor of metabolic syndrome in prepubertal children. Arch. Endocrinol. Metab. 2017 Jan-Feb ;61(1), 7–13. https://doi.org/10.1590/2359-3997000000199 . Epub 2016 Sep 5. PMID: 27598976; PMCID: PMC10522114.
      Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20(2), 12. https://doi.org/10.1007/s11906-018-0812-z (2018). PMID: 29480368; PMCID: PMC5866840. (PMID: 10.1007/s11906-018-0812-z294803685866840)
      Zafar, U., Khaliq, S., Ahmad, H. U., Manzoor, S. & Lone, K. P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Horm. (Athens) 17(3), 299–313. https://doi.org/10.1007/s42000-018-0051-3 (2018). Epub 2018 Aug 31. PMID: 30171523. (PMID: 10.1007/s42000-018-0051-3)
      Dutra, M. T., Gadelha, A. B., Nóbrega, O. T. & Lima, R. M. Body adiposity index, but not visceral adiposity index, correlates with inflammatory markers in sarcopenic obese elderly women. Exp Aging Res. 43(3), 291–304. https://doi.org/10.1080/0361073X.2017.1298959 (2018). PMID: 28358295.
      Song, D. et al. Association between the dietary inflammatory index and bone markers in postmenopausal women. PLoS One 17(3), e0265630. https://doi.org/10.1371/journal.pone.0265630 (2022). PMID: 35298570; PMCID: PMC8929634. (PMID: 10.1371/journal.pone.0265630352985708929634)
      Thyfault, J. P. & Rector, R. S. Exercise combats hepatic steatosis: Potential mechanisms and clinical implications. Diabetes 69(4), 517–524. https://doi.org/10.2337/dbi18-0043 (2020). PMID: 32198195; PMCID: PMC7085252. (PMID: 10.2337/dbi18-0043321981957085252)
      Waddington, G.S. Exercise intensity and inflammation in type 2 diabetes. J. Sci. Med. Sport 20(10), 885. https://doi.org/10.1016/j.jsams.2017.08.013 (2017). PMID: 28851520.
      Kinoshita, K. et al. Association of sedentary behaviour and physical activity with cardiometabolic health in Japanese adults. Sci Rep. 12(1), 2262. 10.1038/s41598-022-05302-y. PMID: 35145141; PMCID: PMC8831565.
      Nilsson, A., Wåhlin-Larsson, B. & Kadi, F. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women. PLoS One. 12(4), e0175496. https://doi.org/10.1371/journal.pone.0175496 (2017). PMID: 28388679; PMCID: PMC5384780. (PMID: 10.1371/journal.pone.0175496283886795384780)
      Länsitie, M. et al. Association between accelerometer-measured physical activity, glucose metabolism, and waist circumference in older adults. Diabetes Res. Clin. Pract. 178, 108937 (2021). Epub 2021 Jul 1. PMID: 34217770. (PMID: 10.1016/j.diabres.2021.10893734217770)
      Hansen, A. L. et al. Combined heart rate- and accelerometer-assessed physical activity energy expenditure and associations with glucose homeostasis markers in a population at high risk of developing diabetes: The ADDITION-PRO study. Diabetes Care. 36(10), 3062–3069. https://doi.org/10.2337/dc12-2671 (2013). Epub 2013 Jun 11. PMID: 23757430; PMCID: PMC3781538. (PMID: 10.2337/dc12-2671237574303781538)
      Mohammad Rahimi, G. R., Bijeh, N. & Rashidlamir, A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp. Physiol. 105(3), 449–459. https://doi.org/10.1113/EP088036 (2020). Epub 2020 Jan 29. PMID: 31869474. (PMID: 10.1113/EP08803631869474)
      Sukala, W. R. et al. South Pacific Islanders resist type 2 diabetes: Comparison of aerobic and resistance training. Eur. J. Appl. Physiol. 112 (1), 317–325. https://doi.org/10.1007/s00421-011-1978-0 (2012). Epub 2011 May 10. PMID: 21556816. (PMID: 10.1007/s00421-011-1978-021556816)
      Christensen, R. H. et al. Effect of aerobic and resistance exercise on cardiac adipose tissues: secondary analyses from a randomized clinical trial. JAMA Cardiol. 4(8), 778–787. https://doi.org/10.1001/jamacardio.2019.2074 (2019). Erratum in: JAMA Cardiol. 2019;4(8):833. PMID: 31268469; PMCID: PMC6613292. (PMID: 10.1001/jamacardio.2019.2074312684696613292)
      Ainsworth, B. E. et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32(9 Suppl): S498-504 (2000). https://doi.org/10.1097/00005768-200009001-00009 . PMID: 10993420.
      Ainsworth, B. E. et al. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 43(8), 1575-81 (2011). https://doi.org/10.1249/MSS.0b013e31821ece12 (2011). PMID: 21681120.
      Herrmann, S. D. et al. Adult compendium of physical activities: A third update of the energy costs of human activities. J. Sport Health Sci. 13(1), 6–12 (2024). https://doi.org/10.1016/j.jshs.2023.10.010 . PMID: 38242596; PMCID: PMC10818145.
      Berkemeyer, K. et al. The descriptive epidemiology of accelerometer-measured physical activity in older adults. Int. J. Behav. Nutr. Phys. Act. 13, 2. https://doi.org/10.1186/s12966-015-0316-z (2016). PMID: 26739758; PMCID: PMC4704380. (PMID: 10.1186/s12966-015-0316-z267397584704380)
      Davis, M. G. et al. Objectively measured physical activity in a diverse sample of older urban UK adults. Med. Sci. Sports Exerc. 43(4), 647–654. https://doi.org/10.1249/MSS.0b013e3181f36196 (2011). PMID: 20689449. (PMID: 10.1249/MSS.0b013e3181f3619620689449)
      van Ballegooijen, A. J., van der Ploeg, H. P. & Visser, M. Daily sedentary time and physical activity as assessed by accelerometry and their correlates in older adults. Eur. Rev. Aging Phys. Act. 16, 3. https://doi.org/10.1186/s11556-019-0210-9 (2019). PMID: 30820261; PMCID: PMC6379946. (PMID: 10.1186/s11556-019-0210-9308202616379946)
      Harvey, J. A., Chastin, S. F. & Skelton, D. A. How sedentary are older people? a systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23(3), 471 – 87. https://doi.org/10.1123/japa.2014-0164 (2015). Epub 2014 Nov 11. PMID: 25387160.
      Biswas, A. et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 162(2), 123 – 32. https://doi.org/10.7326/M14-1651 (2015). Erratum in: Ann Intern Med. 2015;163(5):400. PMID: 25599350.
      de Rezende, L. F., Rey-López, J. P., Matsudo, V. K. & do Carmo Luiz, O. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public. Health. 14, 333. https://doi.org/10.1186/1471-2458-14-333 (2014). PMID: 24712381; PMCID: PMC4021060. (PMID: 10.1186/1471-2458-14-333247123814021060)
      Wullems, J. A., Verschueren, S. M., Degens, H., Morse, C. I. & Onambélé, G. L. A review of the assessment and prevalence of sedentarism in older adults, its physiology/health impact and non-exercise mobility counter-measures. Biogerontology. 17(3), 547–565. https://doi.org/10.1007/s10522-016-9640-1 (2016). Epub 2016 Mar 14. PMID: 26972899; PMCID: PMC4889631. (PMID: 10.1007/s10522-016-9640-1269728994889631)
      Rosique-Esteban, N. et al. Leisure-time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study. Clin. Nutr. 38 (3), 1324–1331. https://doi.org/10.1016/j.clnu.2018.05.023 (2019). Epub 2018 Jun 6. PMID: 29910068. (PMID: 10.1016/j.clnu.2018.05.02329910068)
      Golubic, R. et al. Physical activity, sedentary time and gain in overall and central body fat: 7-year follow-up of the ProActive trial cohort. Int. J. Obes. (Lond). 39 (1), 142–148. https://doi.org/10.1038/ijo.2014.66 (2015). Epub 2014 Apr 15. PMID: 24732143; PMCID: PMC4113455. (PMID: 10.1038/ijo.2014.6624732143)
      Inoue, S. et al. Television viewing time is associated with overweight/obesity among older adults, independent of meeting physical activity and health guidelines. J. Epidemiol. 22 (1), 50–56. https://doi.org/10.2188/jea.je20110054 (2012). Epub 2011 Dec 10. PMID: 22156288; PMCID: PMC3798580. (PMID: 10.2188/jea.je20110054221562883798580)
      Wanner, M., Richard, A., Martin, B., Faeh, D. & Rohrmann, S. Associations between self-reported and objectively measured physical activity, sedentary behavior and overweight/obesity in NHANES 2003–2006. Int. J. Obes. (Lond). 41(1), 186–193. https://doi.org/10.1038/ijo.2016.168 (2017). Epub 2016 Sep 28. PMID: 27677618. (PMID: 10.1038/ijo.2016.16827677618)
      Pierre, J., Collinet, C., Schut, P. O. & Verdot, C. Physical activity and sedentarism among seniors in France, and their impact on health. PLoS One. 17(8), e0272785. https://doi.org/10.1371/journal.pone.0272785 (2022). PMID: 35981054; PMCID: PMC9387786. (PMID: 10.1371/journal.pone.0272785359810549387786)
      Vendrell, J. et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: Relationships in obesity. Obes Res. 12(6), 962 – 71. https://doi.org/10.1038/oby.2004.118 (2004). PMID: 15229336.
      Jamar, G. et al. Leptin as a cardiovascular risk marker in metabolically healthy obese: Hyperleptinemia in metabolically healthy obese. Appetite. 108, 477–482 (2017). Epub 2016 Nov 9. PMID: 27838444. (PMID: 10.1016/j.appet.2016.11.01327838444)
      Ratajczak, M. et al. Effects of endurance and endurance-strength training on endothelial function in women with obesity: A randomized trial. Int. J. Environ. Res. Public. Health. 16(21), 4291. https://doi.org/10.3390/ijerph16214291 (2019). PMID: 31694237; PMCID: PMC6862069. (PMID: 10.3390/ijerph16214291316942376862069)
      Monteiro-Junior, R. S. et al. Effect of exercise on inflammatory profile of older persons: Systematic review and meta-analyses. J. Phys. Act. Health. 15(1), 64–71. https://doi.org/10.1123/jpah.2016-0735 (2018). Epub 2017 Oct 26. PMID: 28771081. (PMID: 10.1123/jpah.2016-073528771081)
      Buonani, C. et al. Prática de atividade física e composição corporal em mulheres na menopausa [Physical activity and body composition in menopausal women]. Rev. Bras. Ginecol. Obstet. 35(4), 153-8. Portuguese. https://doi.org/10.1590/s0100-72032013000400004 (2013). PMID: 23752579.
      Wang, S. & Ren, J. Obesity paradox in aging: From prevalence to pathophysiology. Prog. Cardiovasc. Dis. 61(2):182–189. https://doi.org/10.1016/j.pcad.2018.07.011 . (2018). Jul-Aug Epub 2018 Jul 7. PMID: 29990534.
      LaMonte, M. J. et al. Both light intensity and moderate-to-vigorous physical activity measured by accelerometry are favorably associated with cardiometabolic risk factors in older women: The objective physical activity and cardiovascular health (OPACH) study. J. Am. Heart Assoc. 6(10), e007064. https://doi.org/10.1161/JAHA.117.007064 (2017). PMID: 29042429; PMCID: PMC5721888. (PMID: 10.1161/JAHA.117.007064290424295721888)
      Umegaki, H. et al. Association between insulin resistance and objective measurement of physical activity in community-dwelling older adults without diabetes mellitus. Diabetes Res. Clin. Pract. 143, 267–274 (2018). Epub 2018 Jul 27. PMID: 30056188. (PMID: 10.1016/j.diabres.2018.07.02230056188)
      Figueiró, T. H. et al. Association of objectively measured sedentary behavior and physical activity with cardiometabolic risk markers in older adults. PLoS One. 14(1), e0210861. https://doi.org/10.1371/journal.pone.0210861 (2019). PMID: 30657795; PMCID: PMC6338374. (PMID: 10.1371/journal.pone.0210861306577956338374)
      Gierach, M. & Junik, R. Metabolic syndrome in women - correlation between BMI and waist circumference. Endokrynol Pol. 73(1), 163–164. https://doi.org/10.5603/EP.a2021.0108 . Epub 2022 Feb 4. PMID: 35119095 (2022).
      Zhang, F. L. et al. Strong association of waist circumference (WC), body mass index (BMI), waist-to-height ratio (WHtR), and waist-to-hip ratio (WHR) with diabetes: A population-based cross-sectional study in Jilin Province, China. J. Diabetes Res. (2021). https://doi.org/10.1155/2021/8812431 (2021). PMID: 34056007; PMCID: PMC8147550.
      Myint, P. K., Kwok, C. S., Luben, R. N., Wareham, N. J. & Khaw, K. T. Body fat percentage, body mass index and waist-to-hip ratio as predictors of mortality and cardiovascular disease. Heart 100(20), 1613-9. (2014). https://doi.org/10.1136/heartjnl-2014-305816 . PMID: 24966306.
      Yano, Y. et al. Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality: The Chicago Heart Association Detection Project in Industry study. J. Am. Coll. Cardiol. 65 (4), 327–335 (2015). PMID: 25634830; PMCID: PMC4948287. (PMID: 10.1016/j.jacc.2014.10.060256348304948287)
      Ahmed, H. M. et al. Primary low level of high-density lipoprotein cholesterol and risks of coronary heart disease, cardiovascular disease, and death: Results from the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 183(10), 875–883. https://doi.org/10.1093/aje/kwv305 (2016). Epub 2016 Apr 18. PMID: 27189327; PMCID: PMC4867155. (PMID: 10.1093/aje/kwv305271893274867155)
      Miller, E. G., Sethi, P., Nowson, C. A., Dunstan, D. W. & Daly, R. M. Effects of progressive resistance training and weight loss versus weight loss alone on inflammatory and endothelial biomarkers in older adults with type 2 diabetes. Eur. J. Appl. Physiol. 117(8), 1669–1678. https://doi.org/10.1007/s00421-017-3657-2 (2017). Epub 2017 Jun 8. PMID: 28597102. (PMID: 10.1007/s00421-017-3657-228597102)
      Hasegawa, N. et al. Aerobic exercise training-induced changes in serum C1q/TNF-related protein levels are associated with reduced arterial stiffness in middle-aged and older adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314(1), R94–R101. https://doi.org/10.1152/ajpregu.00212.2017 (2018). Epub 2017 Oct 25. PMID: 29070503. (PMID: 10.1152/ajpregu.00212.201729070503)
      Newton, R. L. Jr et al. Steps/day and metabolic syndrome in African American adults: The Jackson Heart Study. Prev. Med. 57(6), 855–859. https://doi.org/10.1016/j.ypmed.2013.09.018 (2013). Epub 2013 Oct 3. PMID: 24096141; PMCID: PMC4001862. (PMID: 10.1016/j.ypmed.2013.09.018240961414001862)
      Paluch, A. E. et al. Daily steps and all-cause mortality: A meta-analysis of 15 international cohorts. Lancet Public. Health 7(3), e219–e228. https://doi.org/10.1016/S2468-2667(21)00302-9 (2022). PMID: 35247352; PMCID: PMC9289978. (PMID: 10.1016/S2468-2667(21)00302-9352473529289978)
      Paluch, A. E. et al. Steps for health collaborative. Prospective association of daily steps with cardiovascular disease: A harmonized meta-analysis. Circulation. 147(2), 122–131 (2023). Epub 2022 Dec 20. PMID: 36537288; PMCID: PMC9839547. (PMID: 10.1161/CIRCULATIONAHA.122.06128836537288)
    • Contributed Indexing:
      Keywords: Abdominal obesity; Accelerometer; Metabolic markers; Physical activity; Postmenopausal
    • الرقم المعرف:
      0 (Leptin)
      0 (Biomarkers)
      0 (Resistin)
      0 (Adiponectin)
      0 (Blood Glucose)
      0 (Triglycerides)
    • الموضوع:
      Date Created: 20241103 Date Completed: 20241103 Latest Revision: 20241106
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC11532536
    • الرقم المعرف:
      10.1038/s41598-024-77900-x
    • الرقم المعرف:
      39489777