Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

ST2L promotes VEGFA-mediated angiogenesis in gastric cancer by activating TRAF6/PI3K/Akt/NF-κB pathway via IL-33.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Suppression of Tumorigenicity 2 (ST2) is a member of the interleukin-1 receptor/ Toll-like receptor superfamily, and its specific ligand is Interleukin-33 (IL-33). IL-33/ ST2 signaling has been implicated in numerous inflammatory and allergic diseases, as well as in promoting malignant behavior of tumor cells and angiogenesis. However, the precise role of ST2 in gastric cancer angiogenesis remains incompletely elucidated. We observed a significant correlation between high expression of ST2 in gastric cancer tissues and poor prognosis, along with various clinicopathological features. In vitro experiments demonstrated that the IL-33/ ST2 axis activates the PI3K/AKT/NF-κB signaling pathway through TRAF6, thereby promoting VEGFA-mediated tumor angiogenesis; meanwhile sST2 acts as a decoy receptor to regulate the IL-33/ST2L axis. Consistent findings were also observed in subcutaneous xenograft tumor models in nude mice. Furthermore, we investigated the molecular mechanism by which IL-33 promotes ST2L expression in GC cells via upregulation of transcription factors YY1 and GATA2 through intracellular signaling pathways.
      (© 2024. The Author(s).)
    • References:
      Sung, H. et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660 (2021). (PMID: 10.3322/caac.2166033538338)
      Sisic, L. et al. Postoperative follow-up programs improve survival in curatively resected gastric and junctional cancer patients: a propensity score matched analysis. Gastric Cancer. 21, 552–568. https://doi.org/10.1007/s10120-017-0751-4 (2018). (PMID: 10.1007/s10120-017-0751-428741059)
      Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. & Lordick, F. Gastric cancer. Lancet. 396, 635–648. https://doi.org/10.1016/s0140-6736(20)31288-5 (2020). (PMID: 10.1016/s0140-6736(20)31288-532861308)
      Song, Z., Wu, Y., Yang, J., Yang, D. & Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol. 39, 1010428317714626. https://doi.org/10.1177/1010428317714626 (2017). (PMID: 10.1177/101042831771462628671042)
      Kim, J. Y. et al. Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity. Oncogene. 34, 4928–4938. https://doi.org/10.1038/onc.2014.418 (2015). (PMID: 10.1038/onc.2014.41825531326)
      Luo, P. et al. The IL-33/ST2 pathway suppresses murine colon cancer growth and metastasis by upregulating CD40 L signaling. Biomed. Pharmacother. 127, 110232. https://doi.org/10.1016/j.biopha.2020.110232 (2020). (PMID: 10.1016/j.biopha.2020.11023232559854)
      Li, Y. et al. IL-33 facilitates proliferation of colorectal cancer dependent on COX2/PGE(2). J. Exp. Clin. Cancer Res. 37, 196. https://doi.org/10.1186/s13046-018-0839-7 (2018). (PMID: 10.1186/s13046-018-0839-7301196356098640)
      Zhao, Y. et al. Increased expression of ST2 on regulatory T cells is associated with cancer associated fibroblast-derived IL-33 in laryngeal cancer. Pathol. Res. Pract. 237, 154023. https://doi.org/10.1016/j.prp.2022.154023 (2022). (PMID: 10.1016/j.prp.2022.15402335908385)
      Wang, C. et al. IL-33 signaling fuels outgrowth and metastasis of human lung cancer. Biochem. Biophys. Res. Commun. 479, 461–468. https://doi.org/10.1016/j.bbrc.2016.09.081 (2016). (PMID: 10.1016/j.bbrc.2016.09.08127644880)
      Huang, N. et al. IL–33/ST2 promotes the malignant progression of gastric cancer via the MAPK pathway. Mol. Med. Rep. 23 https://doi.org/10.3892/mmr.2021.12000 (2021).
      Yanagisawa, K., Takagi, T., Tsukamoto, T., Tetsuka, T. & Tominaga, S. Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1. FEBS Lett. 318, 83–87. https://doi.org/10.1016/0014-5793(93)81333-u (1993). (PMID: 10.1016/0014-5793(93)81333-u7916701)
      Larsen, K. M., Minaya, M. K., Vaish, V. & Peña, M. M. O. The role of IL-33/ST2 pathway in Tumorigenesis. Int. J. Mol. Sci. 19 https://doi.org/10.3390/ijms19092676 (2018).
      Homsak, E. & Gruson, D. Soluble ST2: a complex and diverse role in several diseases. Clin. Chim. Acta. 507, 75–87. https://doi.org/10.1016/j.cca.2020.04.011 (2020). (PMID: 10.1016/j.cca.2020.04.01132305537)
      Chang, C. P., Hu, M. H., Hsiao, Y. P. & Wang, Y. C. ST2 Signaling in the Tumor Microenvironment. Adv. Exp. Med. Biol. 1240, 83–93. https://doi.org/10.1007/978-3-030-38315-2_7 (2020). (PMID: 10.1007/978-3-030-38315-2_732060890)
      Funakoshi-Tago, M. et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell. Signal. 20, 1679–1686. https://doi.org/10.1016/j.cellsig.2008.05.013 (2008). (PMID: 10.1016/j.cellsig.2008.05.01318603409)
      Pinto, S. M. et al. A network map of IL-33 signaling pathway. J. Cell. Commun. Signal. 12, 615–624. https://doi.org/10.1007/s12079-018-0464-4 (2018). (PMID: 10.1007/s12079-018-0464-4297059496039344)
      Cayrol, C. & Girard, J. P. Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine. 156, 155891. https://doi.org/10.1016/j.cyto.2022.155891 (2022). (PMID: 10.1016/j.cyto.2022.15589135640416)
      Eissmann, M. F. et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat. Commun. 10, 2735. https://doi.org/10.1038/s41467-019-10676-1 (2019). (PMID: 10.1038/s41467-019-10676-1312277136588585)
      Dixit, A. et al. Targeting TNF-α-producing macrophages activates antitumor immunity in pancreatic cancer via IL-33 signaling. JCI Insight. 7 https://doi.org/10.1172/jci.insight.153242 (2022).
      Sun, X. et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut. 71, 129–147. https://doi.org/10.1136/gutjnl-2020-322744 (2022). (PMID: 10.1136/gutjnl-2020-32274433568427)
      Kwon, J. W. et al. A synergistic partnership between IL-33/ST2 and wnt pathway through Bcl-xL drives gastric cancer stemness and metastasis. Oncogene. 42, 501–515. https://doi.org/10.1038/s41388-022-02575-5 (2023). (PMID: 10.1038/s41388-022-02575-536526851)
      Milosavljevic, M. Z. et al. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget. 7, 18106–18115. https://doi.org/10.18632/oncotarget.7635 (2016). (PMID: 10.18632/oncotarget.7635269191124951275)
      Jovanovic, I. P. et al. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer. 134, 1669–1682. https://doi.org/10.1002/ijc.28481 (2014). (PMID: 10.1002/ijc.2848124105680)
      Choi, Y. S. et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood. 114, 3117–3126. https://doi.org/10.1182/blood-2009-02-203372 (2009). (PMID: 10.1182/blood-2009-02-20337219661270)
      Han, L. et al. Interleukin-33 promotes inflammation-induced lymphangiogenesis via ST2/TRAF6-mediated Akt/eNOS/NO signalling pathway. Sci. Rep. 7, 10602. https://doi.org/10.1038/s41598-017-10894-x (2017). (PMID: 10.1038/s41598-017-10894-x288782855587532)
      Wang, R. et al. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell. Death Dis. 11, 55. https://doi.org/10.1038/s41419-020-2252-3 (2020). (PMID: 10.1038/s41419-020-2252-3319743616978425)
      Van der Jeught, K. et al. ST2 as checkpoint target for colorectal cancer immunotherapy. JCI Insight. 5 https://doi.org/10.1172/jci.insight.136073 (2020).
      Wen, Y. H. et al. Stromal interleukin-33 promotes regulatory T cell-mediated immunosuppression in head and neck squamous cell carcinoma and correlates with poor prognosis. Cancer Immunol. Immunother. 68, 221–232. https://doi.org/10.1007/s00262-018-2265-2 (2019). (PMID: 10.1007/s00262-018-2265-230357458)
      Xiao, P. et al. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology. 5, e1063772. https://doi.org/10.1080/2162402x.2015.1063772 (2016). (PMID: 10.1080/2162402x.2015.106377226942079)
      Liu, J. et al. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells. EBioMedicine. 33, 196–210. https://doi.org/10.1016/j.ebiom.2018.06.003 (2018). (PMID: 10.1016/j.ebiom.2018.06.003299215536085568)
      Zhang, J. F. et al. IL–33 enhances glioma cell migration and invasion by upregulation of MMP2 and MMP9 via the ST2-NF-κB pathway. Oncol. Rep. 38, 2033–2042. https://doi.org/10.3892/or.2017.5926 (2017). (PMID: 10.3892/or.2017.5926288492175652951)
      Baekkevold, E. S. et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol. 163, 69–79. https://doi.org/10.1016/s0002-9440(10)63631-0 (2003). (PMID: 10.1016/s0002-9440(10)63631-0128190121868188)
      Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. & Hermoso, M. A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014 (149185). https://doi.org/10.1155/2014/149185 (2014).
      Chen, X. J. et al. Correlations between serum IL33 and tumor development: a meta-analysis. Asian Pac. J. Cancer Prev. 15, 3503–3505. https://doi.org/10.7314/apjcp.2014.15.8.3503 (2014). (PMID: 10.7314/apjcp.2014.15.8.350324870747)
      Coyle, A. J. et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J. Exp. Med. 190, 895–902. https://doi.org/10.1084/jem.190.7.895 (1999). (PMID: 10.1084/jem.190.7.895105100792195643)
      Nishizaki, T. IL-33 suppresses GSK-3β activation through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway. Heliyon. 4, e00971. https://doi.org/10.1016/j.heliyon.2018.e00971 (2018). (PMID: 10.1016/j.heliyon.2018.e00971305335466260469)
      Cheng, C. Y. et al. CORM-2 prevents human gingival fibroblasts from lipoteichoic acid-induced VCAM-1 and ICAM-1 expression by inhibiting TLR2/MyD88/TRAF6/PI3K/Akt/ROS/NF-κB signaling pathway. Biochem. Pharmacol. 201, 115099. https://doi.org/10.1016/j.bcp.2022.115099 (2022). (PMID: 10.1016/j.bcp.2022.11509935617999)
      Li, Y. et al. LncRNA NORAD mediates the proliferation and apoptosis of diffuse Large-B-Cell lymphoma via regulation of miR-345-3p/TRAF6 Axis. Arch. Med. Res. 53, 271–279. https://doi.org/10.1016/j.arcmed.2022.01.004 (2022). (PMID: 10.1016/j.arcmed.2022.01.00435164979)
      Guo, B. et al. Salidroside attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway. Cell. Commun. Signal. 20, 183. https://doi.org/10.1186/s12964-022-00994-1 (2022). (PMID: 10.1186/s12964-022-00994-1364114679677645)
      Zou, Z. L., Sun, M. H., Yin, W. F., Yang, L. & Kong, L. Y. Avicularin suppresses cartilage extracellular matrix degradation and inflammation via TRAF6/MAPK activation. Phytomedicine. 91, 153657. https://doi.org/10.1016/j.phymed.2021.153657 (2021). (PMID: 10.1016/j.phymed.2021.15365734371251)
      Guo, J. et al. IL-13 induces YY1 through the AKT pathway in lung fibroblasts. PLoS One. 10, e0119039. https://doi.org/10.1371/journal.pone.0119039 (2015). (PMID: 10.1371/journal.pone.0119039257752154361578)
      Zhang, Y. et al. miR–29a suppresses IL–13–induced cell invasion by inhibiting YY1 in the AKT pathway in lung adenocarcinoma A549 cells. Oncol. Rep. 39, 2613–2623. https://doi.org/10.3892/or.2018.6352 (2018). (PMID: 10.3892/or.2018.6352296202225983933)
      Lax, A. et al. Silencing of microRNA-106b-5p prevents doxorubicin-mediated cardiotoxicity through modulation of the PR55α/YY1/sST2 signaling axis. Mol. Ther. Nucleic Acids. 32, 704–720. https://doi.org/10.1016/j.omtn.2023.04.031 (2023). (PMID: 10.1016/j.omtn.2023.04.0313723474710208836)
      Chen, S., Wu, L., Peng, L., Wang, X. & Tang, N. Hepatitis B virus X protein (HBx) promotes ST2 expression by GATA2 in liver cells. Mol. Immunol. 123, 32–39. https://doi.org/10.1016/j.molimm.2020.04.024 (2020). (PMID: 10.1016/j.molimm.2020.04.02432413787)
      Baba, Y. et al. GATA2 is a critical transactivator for the human IL1RL1/ST2 promoter in mast cells/basophils: opposing roles for GATA2 and GATA1 in human IL1RL1/ST2 gene expression. J. Biol. Chem. 287, 32689–32696. https://doi.org/10.1074/jbc.M112.374876 (2012). (PMID: 10.1074/jbc.M112.374876228658593463314)
      Tao, Q. et al. Hypoxia promotes the expression of Von Willebrand factor in breast cancer cells by up-regulating the transcription factor YY1 and down-regulating the hsa-miR-424. Eur. J. Pharmacol. 934, 175308. https://doi.org/10.1016/j.ejphar.2022.175308 (2022). (PMID: 10.1016/j.ejphar.2022.17530836202224)
      Yin, Q. et al. ADAM28 from both endothelium and gastric cancer cleaves Von Willebrand factor to eliminate Von Willebrand factor-induced apoptosis of gastric cancer cells. Eur. J. Pharmacol. 898, 173994. https://doi.org/10.1016/j.ejphar.2021.173994 (2021). (PMID: 10.1016/j.ejphar.2021.17399433675784)
      Tao, Q. et al. Breast cancer cells-derived Von Willebrand Factor promotes VEGF-A-related angiogenesis through PI3K/Akt-miR-205-5p signaling pathway. Toxicol. Appl. Pharmacol. 440, 115927. https://doi.org/10.1016/j.taap.2022.115927 (2022). (PMID: 10.1016/j.taap.2022.11592735192807)
    • Grant Information:
      23Y11905400 Shanghai 2023 Science and Technology Innovation Action Plan Medical Innovation Research Special Project; 21ZR1416900 Natural Science Foundation of Shanghai
    • Contributed Indexing:
      Keywords: Endothelial cells; Gastric cancer; IL-33; ST2; Tumor angiogenesis
    • الرقم المعرف:
      0 (Interleukin-33)
      0 (Interleukin-1 Receptor-Like 1 Protein)
      0 (NF-kappa B)
      EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
      0 (IL1RL1 protein, human)
      0 (IL33 protein, human)
      EC 2.7.1.- (Phosphatidylinositol 3-Kinases)
      0 (Vascular Endothelial Growth Factor A)
      0 (TNF Receptor-Associated Factor 6)
      0 (VEGFA protein, human)
      0 (Tifab protein, human)
      0 (Intracellular Signaling Peptides and Proteins)
    • الموضوع:
      Date Created: 20241103 Date Completed: 20241103 Latest Revision: 20241105
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC11531471
    • الرقم المعرف:
      10.1038/s41598-024-76763-6
    • الرقم المعرف:
      39488565