Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Simulation of 69 microbial communities indicates sequencing depth and false positives are major drivers of bias in prokaryotic metagenome-assembled genome recovery.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- المصدر:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
- بيانات النشر:
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
- الموضوع:
- نبذة مختصرة :
We hypothesize that sample species abundance, sequencing depth, and taxonomic relatedness influence the recovery of metagenome-assembled genomes (MAGs). To test this hypothesis, we assessed MAG recovery in three in silico microbial communities composed of 42 species with the same richness but different sample species abundance, sequencing depth, and taxonomic distribution profiles using three different pipelines for MAG recovery. The pipeline developed by Parks and colleagues (8K) generated the highest number of MAGs and the lowest number of true positives per community profile. The pipeline by Karst and colleagues (DT) showed the most accurate results (~ 92%), outperforming the 8K and Multi-Metagenome pipeline (MM) developed by Albertsen and collaborators. Sequencing depth influenced the accurate recovery of genomes when using the 8K and MM, even with contrasting patterns: the MM pipeline recovered more MAGs found in the original communities when employing sequencing depths up to 60 million reads, while the 8K recovered more true positives in communities sequenced above 60 million reads. DT showed the best species recovery from the same genus, even though close-related species have a low recovery rate in all pipelines. Our results highlight that more bins do not translate to the actual community composition and that sequencing depth plays a role in MAG recovery and increased community resolution. Even low MAG recovery error rates can significantly impact biological inferences. Our data indicates that the scientific community should curate their findings from MAG recovery, especially when asserting novel species or metabolic traits.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Rocha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
Microbiol Spectr. 2024 Mar 5;12(3):e0291823. (PMID: 38289113)
Appl Environ Microbiol. 2021 Feb 26;87(6):. (PMID: 33452027)
Nat Commun. 2021 Mar 31;12(1):2009. (PMID: 33790294)
Mol Ecol Resour. 2024 Feb;24(2):e13904. (PMID: 37994269)
Genome Res. 2015 Jul;25(7):1043-55. (PMID: 25977477)
Front Microbiol. 2020 Aug 18;11:1925. (PMID: 33013732)
Glob Chang Biol. 2020 Apr;26(4):1953-1961. (PMID: 31838767)
Nat Biotechnol. 2013 Jun;31(6):533-8. (PMID: 23707974)
Nat Microbiol. 2023 Aug;8(8):1574-1586. (PMID: 37429908)
Microbiome. 2021 Mar 25;9(1):72. (PMID: 33766108)
Int J Syst Evol Microbiol. 2014 Jun;64(Pt 6):2128-2136. (PMID: 24676729)
Front Microbiol. 2022 Jun 13;13:869135. (PMID: 35756038)
Microbiome. 2020 Jun 10;8(1):90. (PMID: 32522236)
Nat Microbiol. 2018 Jul;3(7):836-843. (PMID: 29807988)
PeerJ. 2015 May 28;3:e985. (PMID: 26038737)
Front Microbiol. 2019 Aug 02;10:1754. (PMID: 31428067)
Nat Commun. 2019 Mar 4;10(1):1014. (PMID: 30833550)
Syst Appl Microbiol. 2019 Jan;42(1):30-40. (PMID: 30528276)
Nucleic Acids Res. 2020 Jan 8;48(D1):D626-D632. (PMID: 31728526)
Sci Data. 2020 Aug 25;7(1):278. (PMID: 32843634)
Nat Microbiol. 2017 Nov;2(11):1533-1542. (PMID: 28894102)
Microb Genom. 2020 Oct;6(10):. (PMID: 33001022)
Rev Argent Microbiol. 2021 Jan-Mar;53(1):27-33. (PMID: 33243445)
Nucleic Acids Res. 2021 Jan 8;49(D1):D743-D750. (PMID: 33221926)
Environ Microbiome. 2022 Nov 18;17(1):57. (PMID: 36401317)
BMC Genomics. 2017 Nov 28;18(1):915. (PMID: 29183281)
Environ Microbiome. 2019 Oct 24;14(1):7. (PMID: 33902704)
mSystems. 2021 Jan 12;6(1):. (PMID: 33436515)
Bioinformatics. 2012 Jun 1;28(11):1420-8. (PMID: 22495754)
Genome Res. 2018 Apr;28(4):569-580. (PMID: 29496730)
PLoS One. 2009;4(5):e5519. (PMID: 19436743)
PLoS One. 2019 Sep 17;14(9):e0222171. (PMID: 31527871)
PLoS One. 2018 Apr 23;13(4):e0196290. (PMID: 29684056)
Nat Methods. 2022 Apr;19(4):429-440. (PMID: 35396482)
ISME J. 2018 Jun;12(7):1768-1778. (PMID: 29491492)
F1000Res. 2018 Nov 8;7:1767. (PMID: 32185014)
PLoS One. 2019 Aug 27;14(8):e0221397. (PMID: 31454394)
Sci Data. 2019 Nov 26;6(1):285. (PMID: 31772173)
Bioinformatics. 2019 Nov 15;:. (PMID: 31730192)
Comput Struct Biotechnol J. 2020 Dec 26;19:732-742. (PMID: 33552445)
PLoS One. 2008 Oct 08;3(10):e3373. (PMID: 18841204)
Microbiol Spectr. 2022 Jun 29;10(3):e0083722. (PMID: 35467389)
PeerJ. 2015 Aug 27;3:e1165. (PMID: 26336640)
- الموضوع:
Date Created: 20241022 Date Completed: 20241101 Latest Revision: 20241103
- الموضوع:
20241103
- الرقم المعرف:
PMC11530072
- الرقم المعرف:
10.1371/journal.pcbi.1012530
- الرقم المعرف:
39436938
No Comments.