Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Genotype distribution and allele frequency of thioester-containing protein 1(Tep1) and its effect on development of Plasmodium oocyst in populations of Anopheles arabiensis in Ethiopia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science
    • الموضوع:
    • نبذة مختصرة :
      Background: Thioester-containing protein 1 (TEP1) is a crucial component of mosquitoes' natural resistance to parasites. To effectively combat malaria, there is a need to better understand how TEP1 polymorphism affects phenotypic traits during infections. Therefore, the purpose of this study was to determine the Tep1 genotype frequency in malaria vector populations from south-western Ethiopia and investigate its effect on Plasmodium oocyst development in Anopheles arabiensis populations.
      Methods: Using standard dippers, Anopheles mosquito larvae were collected from aquatic habitats in Asendabo, Arjo Dedessa, and Gambella in 2019 and 2020. Collected larvae were reared to adults and identified morphologically. Female An. gambiae s.l. were allowed to feed on infected blood containing the same number of gametocytes obtained from P. falciparum and P. vivax gametocyte-positive individuals using indirect membrane feeding methods. Polymerase Chain Reaction (PCR) was used to identify An. gambiae s.l. sibling species. Three hundred thirty An. gambiae s.l. were genotyped using Restricted Fragment Length Polymorphism (RFLP) PCR and sub samples were sequenced to validate the TEP1 genotyping.
      Results: Among the 330 samples genotyped, two TEP1 alleles, TEP1*S1 (82% frequency) and TEP1*R1 (18% frequency), were identified. Three equivalent genotypes, TEP1*S1/S1, TEP1*R1/R1, and TEP1*S1/R1, had mean frequencies of 65.15%, 2.12%, and 32.73%, respectively. The nucleotide diversity was ranging from 0.36554 to 0. 46751 while haplotype diversity ranged from 0.48871 to 0.63161, across all loci. All sample sites had positive Tajima's D and Fu's Fs values. There was a significant difference in the TEP1 allele frequency and genotype frequency among mosquito populations (p < 0.05), except populations of Anopheles arabiensis from Asendabo and Gambella (p > 0.05). In addition, mosquitoes with the TEP1 *RR genotype were susceptible and produced fewer Plasmodium oocysts than mosquitoes with the TEP1 *SR and TEP1 *SS genotypes.
      Conclusion: The alleles identified in populations of An. arabiensis were TEP1*R1 and TEP1*S1. There was no significant variation in TEP1*R1 allele frequency between the high and low transmission areas. Furthermore, An. arabiensis carrying the TEP1*R1 allele was susceptible to Plasmodium infection. Further studies on vector-parasite interactions, particularly on the TEP1 gene, are required for vector control techniques.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
    • References:
      Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
      Malar J. 2021 Apr 20;20(1):191. (PMID: 33879163)
      BMC Public Health. 2022 Jan 29;22(1):196. (PMID: 35093055)
      PLoS One. 2021 Jun 24;16(6):e0241023. (PMID: 34166376)
      Sci Rep. 2016 Feb 10;6:20440. (PMID: 26861587)
      Am J Trop Med Hyg. 2004 Feb;70(2):103-4. (PMID: 14993617)
      J Vis Exp. 2013 Jan 09;(71):. (PMID: 23328684)
      Malar J. 2008 Dec 02;7:248. (PMID: 19055715)
      Science. 2013 May 24;340(6135):984-7. (PMID: 23661646)
      Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1273-80. (PMID: 25552553)
      Mol Biol Evol. 2017 Dec 1;34(12):3299-3302. (PMID: 29029172)
      Parasitol Today. 2000 Feb;16(2):74-7. (PMID: 10652493)
      Mol Ecol Resour. 2016 Mar;16(2):480-6. (PMID: 26426152)
      Science. 2012 Oct 12;338(6104):267-70. (PMID: 23066082)
      Malar J. 2010 Apr 23;9:111. (PMID: 20416059)
      Evol Med Public Health. 2015 Aug 29;2015(1):205-15. (PMID: 26320183)
      Trop Med Int Health. 2001 Aug;6(8):607-13. (PMID: 11555426)
      BMC Evol Biol. 2008 Oct 07;8:274. (PMID: 18840262)
      Trends Genet. 2007 Jun;23(6):259-63. (PMID: 17418445)
      Nature. 2000 Jun 22;405(6789):907-13. (PMID: 10879524)
      Lancet. 2003 Nov 29;362(9398):1792-8. (PMID: 14654317)
      Heliyon. 2020 Oct 16;6(10):e05063. (PMID: 33102831)
      Malar J. 2016 Mar 15;15:166. (PMID: 26980461)
      Malar J. 2010 Jun 11;9:160. (PMID: 20540770)
      Cell. 2004 Mar 5;116(5):661-70. (PMID: 15006349)
      Science. 2009 Oct 2;326(5949):147-50. (PMID: 19797663)
      Malar J. 2020 Sep 22;19(1):344. (PMID: 32962693)
      EMBO J. 1997 Oct 15;16(20):6114-9. (PMID: 9321391)
      PLoS Biol. 2015 Sep 22;13(9):e1002255. (PMID: 26394016)
      J Med Entomol. 2002 Nov;39(6):833-41. (PMID: 12495180)
      PLoS Pathog. 2013;9(9):e1003623. (PMID: 24039584)
      Bull Entomol Res. 2020 Jun;110(3):379-387. (PMID: 31813382)
      Parasit Vectors. 2022 Dec 1;15(1):448. (PMID: 36457004)
      Sci Rep. 2022 Aug 23;12(1):14392. (PMID: 35999450)
      Parasit Vectors. 2016 Jun 10;9(1):334. (PMID: 27286834)
      Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):244-9. (PMID: 21173248)
      Ann Trop Med Parasitol. 1996 Dec;90(6):573-88. (PMID: 9039269)
      Trends Parasitol. 2024 Aug;40(8):731-743. (PMID: 39054167)
      Malar J. 2022 Apr 18;21(1):125. (PMID: 35436961)
      Malar J. 2008 Sep 22;7:182. (PMID: 18803885)
      Insect Biochem Mol Biol. 2004 Jul;34(7):599-605. (PMID: 15242700)
      Malar J. 2009 Aug 05;8:187. (PMID: 19656399)
      Am J Trop Med Hyg. 1997 Feb;56(2):141-7. (PMID: 9080871)
      Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15178-83. (PMID: 26598665)
      PLoS Pathog. 2012;8(10):e1002958. (PMID: 23055931)
      Malar J. 2022 Aug 10;21(1):235. (PMID: 35948910)
      Trends Genet. 2010 Aug;26(8):345-52. (PMID: 20594608)
      Malar J. 2013 Oct 02;12:350. (PMID: 24083353)
      Nat Microbiol. 2019 Jun;4(6):941-947. (PMID: 30911126)
      Acta Trop. 2010 Dec;116(3):167-72. (PMID: 20727338)
      Malar J. 2017 Aug 15;16(1):337. (PMID: 28810861)
      Insect Mol Biol. 2000 Feb;9(1):75-84. (PMID: 10672074)
      J Vis Exp. 2007;(5):221. (PMID: 18979019)
      Am J Trop Med Hyg. 1993 Oct;49(4):520-9. (PMID: 8214283)
      Nat Rev Microbiol. 2013 Oct;11(10):701-12. (PMID: 24037451)
      PLoS One. 2016 Dec 19;11(12):e0168279. (PMID: 27992481)
      Malar J. 2013 Jul 19;12:256. (PMID: 23870708)
      PLoS One. 2013 Sep 13;8(9):e74351. (PMID: 24058551)
      PLoS One. 2012;7(1):e30849. (PMID: 22292059)
      Malar J. 2019 Apr 24;18(1):145. (PMID: 31014319)
      BMC Infect Dis. 2013 Apr 03;13:161. (PMID: 23566411)
    • الرقم المعرف:
      0 (Insect Proteins)
      0 (TEP1 protein, Anopheles gambiae)
    • الموضوع:
      Date Created: 20241009 Date Completed: 20241009 Latest Revision: 20241011
    • الموضوع:
      20241011
    • الرقم المعرف:
      PMC11463741
    • الرقم المعرف:
      10.1371/journal.pone.0311783
    • الرقم المعرف:
      39383173