Item request has been placed!
×
Item request cannot be made.
×
![loading](/sites/all/modules/hf_eds/images/loading.gif)
Subterranean fauna associated with mesovoid shallow substratum in canga formations from southeastern Brazil: invertebrate biodiversity of a highly threatened ecosystem.
Item request has been placed!
×
Item request cannot be made.
×
![loading](/sites/all/modules/hf_eds/images/loading.gif)
- المؤلفون: Dornellas LMSM;Dornellas LMSM; da Silva PG; da Silva PG; da Silva PG; Auler AS; Auler AS; Culver DC; Culver DC; Pipan T; Pipan T
- المصدر:
Scientific reports [Sci Rep] 2024 Oct 05; Vol. 14 (1), pp. 23211. Date of Electronic Publication: 2024 Oct 05.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع:
- نبذة مختصرة : Iron Formations (IF) are threatened by mining, particularly the Mesovoid Shallow Substratum (MSS), an understudied subterranean environment. We evaluate the spatiotemporal patterns of subterranean fauna in MSS of iron duricrust (canga) in the Iron Quadrangle and Southern Espinhaço Range, southeastern Brazil. Samplings took place between July 2014 and June 2022 using five trap types. We sampled 108,005 individuals, 1,054 morphospecies, and seven phyla, globally the largest dataset on MSS in IF. Arthropoda represented 97% of all invertebrates sampled. We identified 31 troglomorphic organisms, primarily Arthropoda and Platyhelminthes. MSS traps were the most efficient method, capturing 80% of all invertebrates. Morphospecies were more prevalent in each locality than shared among localities. Species replacement was the main processes to spatial differences. Over time, we found a decrease of total dissimilarity and importance of species replacement for troglomorphic organisms. A positive correlation between spatial distance and compositional dissimilarity of invertebrates was found. Iron Quadrangle and Southern Espinhaço Range showed marked differences in the spatiotemporal patterns of subterranean fauna. Brazilian IF are threatened, with their biological significance not fully understood but highly endangered due their limited distribution. Conservation efforts require a comprehensive understanding of both biotic and abiotic factors shaping the entire IF ecosystem.
(© 2024. The Author(s).) - References: Cloud, P. Paleoecological significance of the Banded Iron-formation. Econ. Geol. 68, 1135–1143. https://doi.org/10.2113/gsecongeo.68.7.1135 (1973). (PMID: 10.2113/gsecongeo.68.7.1135)
Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467–508. https://doi.org/10.2113/gsecongeo.105.3.467 (2010). (PMID: 10.2113/gsecongeo.105.3.467)
Klein, C. Some precambrian banded iron-formations (BIFs) from around the world: their age, geological setting, mineralogy, metamorphism, geochemistry, and origin. Min. 90, 1473–1499. https://doi.org/10.2138/am.2005.1871 (2005). (PMID: 10.2138/am.2005.1871)
Salles, D. M., Carmo, F. F. & Jacobi, C. M. Habitat loss challenges the conservation of endemic plants in mining-targeted Brazilian mountains. Environ. Conserv. 46, 140–146. https://doi.org/10.1017/S0376892918000401 (2019). (PMID: 10.1017/S0376892918000401)
Souza-Filho, P. W. M. et al. Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: a challenge for biodiversity conservation. PLoS ONE. 14, e0211095. https://doi.org/10.1371/journal.pone.0211095 (2019). (PMID: 10.1371/journal.pone.0211095306536076336337)
Ferreira, R. L. et al. Brazilian cave heritage under siege. Science. 375, 1238–1239. https://doi.org/10.1126/science.abo1973 (2022). (PMID: 10.1126/science.abo197335298256)
Rosière, C. A. & Chemale, F. Jr. Brazilian iron formations and their geological setting. Braz J. Geol. 30, 274–278 (2000).
Brasil Brazil stands out in the export of iron ore, (2022). https://www.gov.br/en/government-of-brazil/latest-news/2022/brazil-stands-out-in-the-export-of-iron-ore.
Piló, L. B., Coelho, A. & Reino, J. C. R. in Geossistema Ferruginosos: áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais (eds F. F. Carmo & L. H. Y. Kamino) 125–148 (3i Editora, 2015).
Culver, D. C. & Pipan, T. Superficial subterranean habitats – gateway to the subterranean realm? Cave Karst Sci. 35, 5–12 (2008).
Ferreira, R. L., de Oliveira, M. P. A. & Souza Silva, M. in In Cave Ecology. 435–447 (eds Moldovan, O. T., Kováč, Ľ. & Halse, S.) (Springer, 2018).
Auler, A. S., Parker, C. W., Barton, H. A. & Soares, G. A. in In Encyclopedia of Caves. 559–566 (eds White, W. B., Culver, D. C. & Pipan, T.) (Academic, 2019).
Juberthie, C., Delay, B. & Bouillon, M. Extension Du milieu souterrain en zone non-calcaire: description d’un nouveau milieu et de son peuplement par les coleopteres troglobies. Mem. Bioespol. 7, 19–52 (1980).
Culver, D. C. & Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Conservation (Oxford University Press, 2014).
Trevelin, L. C. et al. Biodiversity surrogates in amazonian iron cave ecosystems. Ecol. Indic. 101, 813–820. https://doi.org/10.1016/j.ecolind.2019.01.086 (2019). (PMID: 10.1016/j.ecolind.2019.01.086)
Ferreira, R. L., Oliveira, M. P. A. & Silva, M. S. in Geossistema Ferruginosos: áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais (eds F. F. Carmo & L. H. Y. Kamino) 195–231 (3i Editora, 2015).
Souza-Silva, M., Martins, R. P. & Ferreira, R. L. Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodivers. Conserv. 20, 1713–1729. https://doi.org/10.1007/s10531-011-0057-5 (2011). (PMID: 10.1007/s10531-011-0057-5)
Dornellas, L. M. S. M. et al. Spatiotemporal distribution of invertebrate fauna in a mesovoid shallow substratum in iron formations. Biodivers. Conserv. 33, 1351–1357. https://doi.org/10.1007/s10531-024-02801-4 (2024). (PMID: 10.1007/s10531-024-02801-4)
Zeppelini, D. et al. Hotspot in ferruginous rock may have serious implications in Brazilian conservation policy. Sci. Rep. 12, 14871. https://doi.org/10.1038/s41598-022-18798-1 (2022). (PMID: 10.1038/s41598-022-18798-1360503529437091)
Eusébio, R. P., Fonseca, P. E., Rebelo, R., Mathias, M. L. & Reboleira, A. S. P. S. how to map potential mesovoid shallow substratum (MSS) habitats? A case study in colluvial MSS. Subterr. Biol. 45, 141–156. https://doi.org/10.3897/subtbiol.45.96332 (2023). (PMID: 10.3897/subtbiol.45.96332)
Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press, 2019).
Oliveira, H. F. M., Silva, D. C., Zangrandi, P. L. & Domingos, F. M. C. B. Brazil opens highly protected caves to mining, risking fauna. Nature. 602, 386. https://doi.org/10.1038/d41586-022-00406-x (2022). (PMID: 10.1038/d41586-022-00406-x35169291)
Caetano, D. S., Bená, D. C. & Vanin, S. A. Copelatus cessaima sp. nov. (Coleoptera Dytiscidae Copelatinae) first record of a troglomorphic diving beetle from Brazil. Zootaxa. 3710, 226–232. https://doi.org/10.11646/zootaxa.3710.3.2 (2013). (PMID: 10.11646/zootaxa.3710.3.226106686)
Bichuette, M. E., Simões, L. B., von Schimonsky, D. M. & Gallão, J. E. Effectiveness of quadrat sampling on terrestrial cave fauna survey - a case study in a neotropical cave. Acta Sci. Biol. Sci. 37, 345–351. https://doi.org/10.4025/actascibiolsci.v37i3.28374 (2015). (PMID: 10.4025/actascibiolsci.v37i3.28374)
Mendonça, D. R. M., Rodrigues, F. P., Argolo, G., Sousa-Silva, M. & Ferreira, R. L. Eficiência de iscas na coleta de artrópodes encontrados no meio subterrâneo superficial em formação ferrífera na Amazônia brasileira. Rev. Bras. Espeleol. 1, 1–18. https://doi.org/10.37002/rbesp.v1i12.2365 (2023). (PMID: 10.37002/rbesp.v1i12.2365)
Brasil Decreto nº 10.935, de 12 de janeiro de 2022. Dispõe sobre a proteção das cavidades naturais subterrâneas existentes no território nacional. (Diário Oficial da União, (2022).
ICMBio/CECAV. Área de influência sobre o patrimônio espeleológico: orientações básicas à realização de estudos espeleológicos. (ICMBio/CECAV. (2022).
Harvey, M. S., Berry, O., Edward, K. L. & Humphreys, G. Molecular and morphological systematics of hypogean schizomids (Schizomida:Hubbardiidae) in semiarid Australia. Invertebr Syst. 22, 167–194. https://doi.org/10.1071/IS07026 (2008). (PMID: 10.1071/IS07026)
Smith, G. B., Eberhard, S. M., Perina, G. & Finston, T. New species of short range endemic troglobitic silverfish (Zygentoma: Nicoletiidae) from subterranean habitats in Western Australia’s semi-arid Pilbara region. Rec West. Aust Mus. 27, 101–116. https://doi.org/10.18195/issn.0312-3162.27(2).2012.101-116 (2012). (PMID: 10.18195/issn.0312-3162.27(2).2012.101-116)
Humphreys, G., Blandford, D. C., Berry, O., Harvey, M. & Edward, K. Mesa A and Robe Valley Mesas Troglobitic Fauna Survey: Subterranean Fauna Assessment (Biota Environmental Sciences, 2006).
Halse, S. A. & Pearson, G. B. Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr. Biol. 13, 17–34. https://doi.org/10.3897/subtbiol.13.6991 (2014). (PMID: 10.3897/subtbiol.13.6991)
INMET. Normais Climatológicas do Brasil. Available at: https (2022). https://portal.inmet.gov.br/normais .
Babinski, M., Chemale, F. & Van Schmus, W. R. The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res. 72, 235–245. https://doi.org/10.1016/0301-9268(94)00091-5 (1995). (PMID: 10.1016/0301-9268(94)00091-5)
Rolim, V. K., Rosière, C. A., Santos, J. O. S. & McNaughton, N. J. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil. J. South. Am. Earth Sci. 65, 43–66. https://doi.org/10.1016/j.jsames.2015.11.003 (2016). (PMID: 10.1016/j.jsames.2015.11.003)
Auler, A. S. et al. Silica and iron mobilization, cave development and landscape evolution in iron formations in Brazil. Geomorphology. 398, 108068. https://doi.org/10.1016/j.geomorph.2021.108068 (2022). (PMID: 10.1016/j.geomorph.2021.108068)
Spier, C. A., Levett, A. & Rosière, C. A. Geochemistry of canga (ferricrete) and evolution of the weathering profile developed on itabirite and iron ore in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Min. Deposita. 54, 983–1010. https://doi.org/10.1007/s00126-018-0856-7 (2019). (PMID: 10.1007/s00126-018-0856-7)
Gagen, E. J. et al. Biogeochemical processes in canga ecosystems: Armoring of iron ore against erosion and importance in iron duricrust restoration in Brazil. Ore Geol. Rev. 107, 573–586. https://doi.org/10.1016/j.oregeorev.2019.03.013 (2019). (PMID: 10.1016/j.oregeorev.2019.03.013)
Parker, C. W. et al. Enhanced terrestrial Fe(II) mobilization identified through a novel mechanism of microbially driven cave formation in Fe(III)-rich rocks. Sci. Rep. 12, 17062. https://doi.org/10.1038/s41598-022-21365-3 (2022). (PMID: 10.1038/s41598-022-21365-3362242109556595)
Calapa, K. A. et al. Hydrologic alteration and enhanced Microbial Reductive Dissolution of Fe(III) (hydr)oxides under Flow conditions in Fe(III)-Rich rocks: Contribution to Cave-forming processes. Front. Microbiol. 12, 696534. https://doi.org/10.3389/fmicb.2021.696534 (2021). (PMID: 10.3389/fmicb.2021.696534343355268317133)
Dias, J. C., d., S. & Bacellar, L. d. A. P. A hydrogeological conceptual model for the groundwater dynamics in the ferricretes of Capão Xavier, Iron Quadrangle, Southeastern Brazil. Catena. 207, 105663. https://doi.org/10.1016/j.catena.2021.105663 (2021). (PMID: 10.1016/j.catena.2021.105663)
Parker, C. W., Wolf, J. A., Auler, A. S., Barton, H. A. & Senko, J. M. Microbial reducibility of Fe(III) phases associated with the genesis of iron ore caves in the Iron Quadrangle, Minas Gerais, Brazil. Minerals 3, 395–411 (2013). https://doi.org/10.3390/min3040395.
López, H. & Oromí, P. A pitfall trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiology Notes. 2, 7–11 (2010).
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria, Vienna, (2023).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014). (PMID: 10.1890/13-0133.1)
Hill, M. Diversity and evenness: a unifying notation and its consequences. Ecology. 54, 427–432. https://doi.org/10.2307/1934352 (1973). (PMID: 10.2307/1934352)
Hsieh, T. C., Ma, K. H., Chao, A. & McInerny, G. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. https://doi.org/10.1111/2041-210x.12613 (2016). (PMID: 10.1111/2041-210x.12613)
Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol. Biogeogr. 23, 1324–1334. https://doi.org/10.1111/geb.12207 (2014). (PMID: 10.1111/geb.12207)
Package. ‘BAT’: Biodiversity Assessment Tools (R package version 2.1.0. (2020). https://CRAN.R-project.org/package=BAT .
Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics. 26, 547–558 (1970). (PMID: 10.2307/25291085480664)
Vegan. community ecology package (R package version 2.5-6. (2019). https://CRAN.R-project.org/package=vegan .
Deharveng, L. et al. A hotspot of subterranean biodiversity on the brink: Mo so Cave and the Hon Chong Karst of Vietnam. Diversity. 15, 1058. https://doi.org/10.3390/d15101058 (2023). (PMID: 10.3390/d15101058)
Deharveng, L., Bedos, A., Pipan, T. & Culver, D. C. Global subterranean biodiversity: a unique pattern. Diversity. 16, 157 (2024). (PMID: 10.3390/d16030157)
Whittaker, R. J. & Triantis, K. A. The species–area relationship: an exploration of that ‘most general, yet protean pattern’. J. Biogeogr. 39, 623–626. https://doi.org/10.1111/j.1365-2699.2012.02692.x (2012). (PMID: 10.1111/j.1365-2699.2012.02692.x)
Leibold, M. A. & Chase, J. M. Metacommunity Ecology504 (Princeton University Press, 2018).
Mammola, S. et al. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Sci. Nat. 103, 88. https://doi.org/10.1007/s00114-016-1413-9 (2016). (PMID: 10.1007/s00114-016-1413-9)
Rendoš, M., Mock, A. & Jászay, T. Spatial and temporal dynamics of invertebrates dwelling karstic mesovoid shallow substratum of Sivec National Nature Reserve (Slovakia), with emphasis on Coleoptera. Biologia. 67, 1143–1151. https://doi.org/10.2478/s11756-012-0113-y (2012). (PMID: 10.2478/s11756-012-0113-y)
Berg, M. P., Kniese, J. P., Bedaux, J. J. M. & Verhoef, H. A. Dynamics and stratification of functional groups of micro- and mesoarthropods in the organic layer of a scots pine forest. Biol. Fertil. Soils. 26, 268–284. https://doi.org/10.1007/s003740050378 (1998). (PMID: 10.1007/s003740050378)
Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press, 2009).
Gers, C. Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecol. 19, 205–213. https://doi.org/10.1016/S1146-609X(98)80025-8 (1998). (PMID: 10.1016/S1146-609X(98)80025-8)
Nitzu, E. et al. Scree habitats: ecological function, species conservation and spatial-temporal variation in the arthropod community. Syst. Biodivers. 12, 65–75. https://doi.org/10.1080/14772000.2013.878766 (2014). (PMID: 10.1080/14772000.2013.878766)
Nae, A. Data concerning the Araneae fauna from the Aninei Mountains karstic area (Banat, Romania). Trav Inst. Speol E Racovitza. 47, 53–63 (2008).
Di Russo, C., Carchini, G., Rampini, M., Lucarelli, M. & Sbordoni, V. Long term stability of a terrestrial cave community. Int. J. Speleol. 26, 75–88. https://doi.org/10.5038/1827-806X.26.1.7 (1997). (PMID: 10.5038/1827-806X.26.1.7)
Mammola, S. et al. Climate change going deep: the effects of global climatic alterations on cave ecosystems. Anthropocene Rev. 6, 98–116. https://doi.org/10.1177/2053019619851594 (2019). (PMID: 10.1177/2053019619851594)
Gallão, J. E. & Bichuette, M. E. Brazilian obligatory subterranean fauna and threats to the hypogean environment. ZooKeys. 746, 1–23 (2018). (PMID: 10.3897/zookeys.746.15140)
Brescovit, A. D., Ferreira, R. L., Souza-Silva, M. & Rheims, C. A. Brasilomma gen. nov., a new prodidomid genus from Brazil (Araneae, Prodidomidae). Zootaxa. 3572, 23–32. https://doi.org/10.11646/zootaxa.3572.1.4 (2012). (PMID: 10.11646/zootaxa.3572.1.4)
Prado, G. C. & Ferreira, R. L. Three new troglobitic species of Pseudochthonius Balzan, 1892 (Pseudoscorpiones, Chthoniidae) from northeastern Brazil. Zootaxa. 5249, 92–110. https://doi.org/10.11646/zootaxa.5249.1.5 (2023). (PMID: 10.11646/zootaxa.5249.1.537044432)
Von Schimonsky, D. M., Gallão, J. E. & Bichuette, M. E. A new troglobitic Pseudochthonius (Pseudoscorpiones: Chthoniidae) from Minas Gerais State, south-east Brazil. Arachnology. 19, 38–46. https://doi.org/10.13156/arac.2022.19.1.38 (2022). (PMID: 10.13156/arac.2022.19.1.38) - Contributed Indexing: Keywords: Iron Quadrangle; Iron formations; MSS; Shallow subterranean habitat; Southern Espinhaço Range; Troglobiotic
- الموضوع: Date Created: 20241005 Date Completed: 20241005 Latest Revision: 20241008
- الموضوع: 20250114
- الرقم المعرف: PMC11455929
- الرقم المعرف: 10.1038/s41598-024-75053-5
- الرقم المعرف: 39369099
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
![](https://library.dctabudhabi.ae/sites/default/files/dct_logo_white.png)
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.