Item request has been placed!
×
Item request cannot be made.
×

Coastal dune management affects above and belowground biotic characteristics.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: White AE;White AE;White AE; Cohn N; Cohn N; Davis EH; Davis EH; Hein CJ; Hein CJ; Zinnert JC; Zinnert JC
- المصدر:
Scientific reports [Sci Rep] 2024 Sep 30; Vol. 14 (1), pp. 22688. Date of Electronic Publication: 2024 Sep 30.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع:
- نبذة مختصرة : Dune vegetation mediates dune-building through trapping wind-blown sand and reduces dune erosion by attenuating wave energy via above- and belowground biomass. Despite the role of vegetation in dune functions, the amount and distribution of biomass within a dune remains poorly quantified due to a lack of ample data. Our objectives were to determine the effects of management history and elevation on (1) dune belowground biotic structure and aboveground community composition and (2) to determine best predictors of belowground biomass. We sampled belowground biomass and sedimentology across the dune profile at sites in the Outer Banks, North Carolina, USA. Dunes were classified as either unmanaged (no anthropogenic interventions) or managed (sand fencing, vegetation planting, dune construction). Living belowground biomass was higher in unmanaged dunes and decreased with depth. Non-living belowground biomass was 50% higher than living biomass and with greater abundance in unmanaged dunes. Elevation was a significant covariate of living and non-living belowground biomass, vegetative cover and species richness. Plant community composition varied less in managed dunes and differed significantly from unmanaged dunes. Vegetative cover, species richness, elevation, sedimentology and management history were predictors of belowground biomass. These results underscore the influence of management and geomorphology on dune plant communities, which may influence erosion resistance.
(© 2024. The Author(s).) - References: Sigren, J. M., Figlus, J., Highfield, W., Feagin, R. A. & Armitage, A. R. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from Hurricane Ike. J. Coast. Res.34, 164–173. https://doi.org/10.2112/JCOASTRES-D-16-00169.1 (2018). (PMID: 10.2112/JCOASTRES-D-16-00169.1)
Hanley, M. E. et al. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast. Eng.87, 136–146. https://doi.org/10.1016/j.coastaleng.2013.10.020 (2014). (PMID: 10.1016/j.coastaleng.2013.10.020)
Beuzen, T., Harley, M. D., Splinter, K. D. & Turner, I. L. Controls of variability in berm and dune storm erosion. J. Geophys. Res. Earth Surf.124, 2647–2665. https://doi.org/10.1029/2019JF005184 (2019). (PMID: 10.1029/2019JF005184)
Cohn, N. et al. Environmental and morphologic controls on wave-induced dune response. Geomorphology329, 108–128. https://doi.org/10.1016/j.geomorph.2018.12.023 (2019). (PMID: 10.1016/j.geomorph.2018.12.023)
Splinter, K. D., Kearney, E. T. & Turner, I. L. Drivers of alongshore variable dune erosion during a storm event: Observations and modelling. Coast. Eng.131, 31–41. https://doi.org/10.1016/j.coastaleng.2017.10.011 (2018). (PMID: 10.1016/j.coastaleng.2017.10.011)
Maximiliano-Cordova, M. et al. Does the functional richness of plants reduce wave erosion on embryo coastal dunes?. Estuar. Coast.42, 1730–1741. https://doi.org/10.1007/s12237-019-00537-x (2019). (PMID: 10.1007/s12237-019-00537-x)
Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PloS One10, e0118571. https://doi.org/10.1371/journal.pone.0118571 (2015). (PMID: 10.1371/journal.pone.0118571257600374367969)
Bhatia, K. T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun.10, 1–9. https://doi.org/10.1038/s41467-019-08471-z (2019). (PMID: 10.1038/s41467-019-08471-z)
Rangel-Buitrago, N., Williams, A. T. & Anfuso, G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Columbia. A chronicle of pitfalls. Ocean Coast. Manag.156, 58–76. https://doi.org/10.1016/j.ocecoaman.2017.04.006 (2018). (PMID: 10.1016/j.ocecoaman.2017.04.006)
Feagin, R. A. et al. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar. Coast. Shelf. Sci.219, 97–106. https://doi.org/10.1016/j.ecss.2019.01.018 (2019). (PMID: 10.1016/j.ecss.2019.01.018)
Walker, S. L. & Zinnert, J. Whole plant traits of coastal dune vegetation and implications for interactions with dune dynamics. Ecosphere13, e4065. https://doi.org/10.1002/ecs2.4065 (2022). (PMID: 10.1002/ecs2.4065)
Perumal, V. J. & Maun, M. A. Ecophysiological response of dune species to experimental burial under field and controlled conditions. Plant Ecol.184, 89–104. https://doi.org/10.1007/s11258-005-9054-7 (2006). (PMID: 10.1007/s11258-005-9054-7)
Feagin, R. A. et al. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ.13, 203–210. https://doi.org/10.1890/140218 (2015). (PMID: 10.1890/140218)
Hesp, P. A. & Martinez, M. L. Disturbance Processes and Dynamics in Coastal Dunes. In Plant Disturbance Ecology: the Process and the Response (eds Johnson, E. A. & Miyanishi, K.) 215–247 (Elsevier Inc, 2007). (PMID: 10.1016/B978-012088778-1/50009-1)
De Battisti, D. & Griffin, J. N. Below-ground biomass of plants, with a key contribution of buried shoots, increases foredune resistance to wave swash. Ann. Bot.125, 325–334. https://doi.org/10.1093/aob/mcz125 (2020). (PMID: 10.1093/aob/mcz12531631214)
Kana, T. W. & Kaczkowski, H. L. Planning, preliminary design, and initial performance of the nags head beach nourishment project. Coast. Eng. Proc. https://doi.org/10.9753/icce.v33.sediment.109 (2012). (PMID: 10.9753/icce.v33.sediment.109)
Wootton, L. S. et al.New Jersey Sea Grant Consortium Dune Manual (New Jersey Sea Grant Consortium Dune Manual, New Jersey, 2016).
Rogers, S., & Nash, D. (2003). The Dune Book. North Carolina Sea Grant. https://ncseagrant.ncsu.edu/ncseagrant_docs/products/2000s/dune_book.pdf.
Jackson, N. L. & Nordstrom, K. F. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian. Res.3, 181–196. https://doi.org/10.1016/j.aeolia.2011.03.011 (2011). (PMID: 10.1016/j.aeolia.2011.03.011)
Nordstrom, K. F., Jackson, N. L., Bruno, M. S. & de Butts, H. A. Municipal initiatives for managing dunes in coastal residential areas: A case study of Avalon, New Jersey, USA. Geomorphology47, 137–152. https://doi.org/10.1016/S0169-555X(02)00084-3 (2002). (PMID: 10.1016/S0169-555X(02)00084-3)
Woods, N. N., Kirschner, A. & Zinnert, J. C. Intraspecific competition in common coastal dune grasses overshadows facilitation on the dune face. Restor. Ecol.31(4), e13870 (2023). (PMID: 10.1111/rec.13870)
Conn, C. E. & Day, F. Belowground biomass patterns on a coastal barrier island in Virginia. Bull. Torrey Bot. Club.120, 121–127. https://doi.org/10.2307/2996941 (1993). (PMID: 10.2307/2996941)
Stevenson, M. J. & Day, F. P. Fine-root biomass distribution and production along a barrier island chronosequence. Am. Midl. Nat.135, 205–217. https://doi.org/10.2307/2426703 (1996). (PMID: 10.2307/2426703)
Charbonneau, B. R., Wnek, J. P., Langley, J. A., Lee, G. & Balsamo, R. A. Above vs. belowground plant biomass along a barrier island: Implications for dune stabilization. J. Environ. Manag.182, 126–133. https://doi.org/10.1016/j.jenvman.2016.06.032 (2016). (PMID: 10.1016/j.jenvman.2016.06.032)
Nordstrom, K. F., Liang, B., Garilao, E. S. & Jackson, N. L. Topography, vegetation cover and below ground biomass of spatially constrained and unconstrained foredunes in New Jersey, USA. Ocean Coast. Manag.156, 117–126. https://doi.org/10.1016/j.ocecoaman.2017.06.001 (2018). (PMID: 10.1016/j.ocecoaman.2017.06.001)
Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol.90, 480–494. https://doi.org/10.1046/j.1365-2745.2002.00682.x (2002). (PMID: 10.1046/j.1365-2745.2002.00682.x)
McCulley, R. L., Jobbágy, E. G., Pockman, W. T. & Jackson, R. B. Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Ecosyst. Ecol.141, 620–628. https://doi.org/10.1007/s00442-004-1687-z (2004). (PMID: 10.1007/s00442-004-1687-z)
Young, D. R., Brantley, S. T., Zinnert, J. C. & Vick, J. K. Landscape position dynamics in a coastal barrier island landscape. Ecosphere2, art71 (2011). (PMID: 10.1890/ES10-00186.1)
Hall, T. M. & Kossin, J. P. Hurricane stalling along the North American coast and implications for rainfall. NPJ. Clim. Atmos. Sci. https://doi.org/10.1038/s41612-019-0074-8 (2019). (PMID: 10.1038/s41612-019-0074-8)
Schweiger, C. & Schuettrumpf, H. Considering the effect of belowground biomass on dune erosion volumes in coastal numerical modeling. Coast. Eng.168, 103927. https://doi.org/10.1016/j.coastaleng.2021.103927 (2021). (PMID: 10.1016/j.coastaleng.2021.103927)
Charbonneau, B. R. et al. A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during Hurricane Sandy. J Appl. Ecol.54, 1385–1394. https://doi.org/10.1111/1365-2664.12846 (2017). (PMID: 10.1111/1365-2664.12846)
Bryant, D. B., Anderson Bryant, M., Sharp, J. A., Bell, G. L. & Moore, C. The response of vegetated dunes to wave attack. Coast. Eng.152, 103506. https://doi.org/10.1016/j.coastaleng.2019.103506 (2019). (PMID: 10.1016/j.coastaleng.2019.103506)
Davidson, S. G., Hesp, P. A. & da Silva, G. M. Controls on dune scarping. Prog. Phys. Geogr.44, 923–947. https://doi.org/10.1177/0309133320932880 (2020). (PMID: 10.1177/0309133320932880)
Castelle, B. et al. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology238, 135–148. https://doi.org/10.1016/j.geomorph.2015.03.006 (2015). (PMID: 10.1016/j.geomorph.2015.03.006)
Mullins, E. et al. Investigating dune-building feedback at the plant level: Insights from a multispecies field experiment. Earth Surf. Process Landf.44, 1734–1747. https://doi.org/10.1002/esp.4607 (2019). (PMID: 10.1002/esp.4607)
Goldstein, E. B., Moore, L. J. & Durán Vinent, O. Lateral vegetation growth rates exert control on coastal foredune “hummockiness” and coalescing time. Earth Surf. Dyn.5, 417–427. https://doi.org/10.5194/esurf-5-417-2017 (2017). (PMID: 10.5194/esurf-5-417-2017)
Brown, J. K. & Zinnert, J. C. Mechanisms of surviving burial: Dune grass interspecific differences drive resource allocation after sand deposition. Ecosphere https://doi.org/10.1002/ecs2.2162 (2018). (PMID: 10.1002/ecs2.2162)
Fort, F., Jouany, C. & Cruz, P. Root and leaf functional trait relations in Poaceae species: Implications of differing resource-acquisition strategies. J Plant. Ecol.6, 211–219. https://doi.org/10.1093/jpe/rts034 (2013). (PMID: 10.1093/jpe/rts034)
Ehleringer, J. R., Phillips, S. L., Schuster, W. S. F. & Sandquist, D. R. Differential utilization of summer rains by desert plants. Oecologia88, 430–434. https://doi.org/10.1007/BF00317589 (1991). (PMID: 10.1007/BF0031758928313807)
Case, M. F., Nippert, J. B., Holdo, R. M. & Staver, A. C. Root-niche separation between savanna trees and grasses is greater on sandier soils. J. Ecol.108(6), 2298–2308. https://doi.org/10.1111/1365-2745.13475 (2020). (PMID: 10.1111/1365-2745.13475)
Davis, E. H., Hein, C. J., Cohn, N., White, A. E. & Zinnert, J. C. Differences in internal sedimentologic and biotic structure between natural, managed, and constructed coastal foredunes. Geomorphology451, 109083. https://doi.org/10.1016/j.geomorph.2024.109083 (2024). (PMID: 10.1016/j.geomorph.2024.109083)
Pries, A. J., Miller, D. L. & Branch, L. C. Identification of structural and spatial features that influence storm-related dune erosion along a barrier-island ecosystem in the Gulf of Mexico. J Coast Res24, 168–175. https://doi.org/10.2112/06-0799.1 (2008). (PMID: 10.2112/06-0799.1)
Ehrenfeld, J. G. Dynamics and processes of barrier island vegetation. Rev. Aquat. Sci.2, 437–480 (1990).
Reijers, V. C. et al. Resilience of beach grasses along a biogeomorphic successive gradient: Resource availability vs. clonal integration. Oecologia192, 201–212. https://doi.org/10.1007/s00442-019-04568-w (2019). (PMID: 10.1007/s00442-019-04568-w318021996974500)
Lee, P. C. The effect of gap dynamics on the size and spatial structure of Solidago sempervirens on primary coastal dunes. J. Veg. Sci.6, 837–846. https://doi.org/10.2307/3236397 (1995). (PMID: 10.2307/3236397)
Brown, J. K., Zinnert, J. C. & Young, D. R. Emergent interactions influence functional traits and success of dune building ecosystem engineers. J. Plant. Ecol.11, 524–532. https://doi.org/10.1093/jpe/rtx033 (2018). (PMID: 10.1093/jpe/rtx033)
Wootton, L. S. et al. When invasive species have benefits as well as costs: Managing Carex kobomugi (Asiatic sand sedge) in New Jersey’s coastal dunes. Biol. Invasions7, 1017–1027. https://doi.org/10.1007/s10530-004-3124-y (2005). (PMID: 10.1007/s10530-004-3124-y)
Ceradini, J. P. & Chalfoun, A. D. When perception reflects reality: non-native grass invasion alters small mammal risk landscapes and survival. Ecol. Evol.7, 1823–1835. https://doi.org/10.1002/ece3.2785 (2017). (PMID: 10.1002/ece3.2785283315905355188)
Ford, H., Garbutt, A., Ladd, C., Malarkey, J. & Skov, M. W. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. J. Veg. Sci.27, 259–268. https://doi.org/10.1111/jvs.12367 (2016). (PMID: 10.1111/jvs.12367278672975111397)
Durán, O. & Moore, L. J. Vegetation controls on the maximum size of coastal dunes. PNAS110, 17217–17222. https://doi.org/10.1073/pnas.1307580110 (2013). (PMID: 10.1073/pnas.1307580110241014813808624)
Palmsten, M. L. & Holman, R. A. Laboratory investigation of dune erosion using stereo video. Coast Eng.60, 123–135. https://doi.org/10.1016/j.coastaleng.2011.09.003 (2012). (PMID: 10.1016/j.coastaleng.2011.09.003)
Roelvink, D. & Costas, S. Coupling nearshore and aeolian processes: XBeach and duna process-based models. Environ. Model. Softw.115, 98–112. https://doi.org/10.1016/j.envsoft.2019.02.010 (2019). (PMID: 10.1016/j.envsoft.2019.02.010)
Cohn, N. et al. Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. J. Mar. Sci. Eng.7, 13. https://doi.org/10.3390/jmse7010013 (2019). (PMID: 10.3390/jmse7010013)
Laporte-Fauret, Q. et al. Classification of Atlantic coastal sand dune vegetation using in situ, UAV, and airborne hyperspectral data. Remote Sens12, 2222. https://doi.org/10.3390/rs12142222 (2020). (PMID: 10.3390/rs12142222)
Wright, L. D. & Short, A. D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar Geol56, 93–118. https://doi.org/10.1016/0025-3227(84)90008-2 (1984). (PMID: 10.1016/0025-3227(84)90008-2)
Cohn, N., Brodie, K., Conery, I. & Spore, N. Alongshore variable accretional and erosional coastal foredune dynamics at event to interannual timescales. Earth Space Sci. https://doi.org/10.1029/2022EA002447 (2022). (PMID: 10.1029/2022EA002447)
Mallinson, D. J. et al. (2008). Past, present and future inlets of the outer banks barrier islands, North Carolina. North Carolina coastal geology cooperative research program. https://geology.ecu.edu/wp-content/pv-uploads/sites/196/2019/05/Inlets-Past-present-and-future.pdf.
Stockdon, H. F., Sallenger, A. H. Jr., Holman, R. A. & Howd, P. A. A simple model for the spatially-variable coastal response to hurricanes. Mar Geol238, 1–20. https://doi.org/10.1016/j.margeo.2006.11.004 (2007). (PMID: 10.1016/j.margeo.2006.11.004)
Finkl, C. W., & Khalil, S. M. Offshore exploration for sand sources: general guidelines and procedural strategies along deltaic coasts. J. Coast. Res. 203–233. http://www.jstor.org/stable/25737058 (2005).
Doran, K. S., Long, J. W., & Overbeck, J. R. (2015). A method for determining average beach slope and beach slope variability for US sandy coastlines. Reston, VA, USA: US Department of the Interior, US Geological Survey.
Freschet, G. T., Roumet, C. & Treseder, K. Sampling roots to capture plant and soil functions. Funct Ecol31, 1506–1518. https://doi.org/10.1111/1365-2435.12883 (2017). (PMID: 10.1111/1365-2435.12883)
Munsell Color Co., Inc., (2012), “Munsell Soil Color Charts,” (rev.): Baltimore.
Folk, R. L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J. Geol.62, 344–359 (1954). (PMID: 10.1086/626171)
Folk, R. L. Petrology of Sedimentary Rocks: Austin 184 (Hemphill Publishing, 1980).
Krumbein, W. C. Size frequency distributions of sediments and the normal phi curve. J. Sediment Res.8, 84–90. https://doi.org/10.1306/D4269008-2B26-11D7-8648000102C1865D (1938). (PMID: 10.1306/D4269008-2B26-11D7-8648000102C1865D)
McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. (p.469). Glenden Beach OR, USA: MjM Software Design.
White, A. E., Cohn, N., Davis, E. H., Hein, C. J. & Zinnert, J. C. Coastal foredune belowground biomass, aboveground biomass, and species cover [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11370397 (2024).
Davis, E., Hein, C., Cohn, N., White, A. & Zinnert, J. North Carolina outer banks, USA coastal foredune sediment cores - grain size data & core log descriptions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10137063 (2023). - Contributed Indexing: Keywords: Belowground biomass; Coastal ecology; Coastal management; Foredune; Nature-based solutions; Root traits
- الموضوع: Date Created: 20240930 Date Completed: 20240930 Latest Revision: 20241003
- الموضوع: 20250114
- الرقم المعرف: PMC11442980
- الرقم المعرف: 10.1038/s41598-024-73312-z
- الرقم المعرف: 39349552
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.