Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Molecular genetic analysis of colorectal carcinoma with an aggressive extraintestinal immunohistochemical phenotype.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Colorectal cancer (CRC) is a leading global cause of illness and death. There is a need for identification of better prognostic markers beyond traditional clinical variables like grade and stage. Previous research revealed that abnormal expression of cytokeratin 7 (CK7) and loss of the intestinal-specific Special AT-rich sequence-binding protein 2 (SATB2) are linked to poor CRC prognosis. This study aimed to explore these markers' prognostic significance alongside two extraintestinal mucins (MUC5AC, MUC6), claudin 18, and MUC4 in 285 CRC cases using immunohistochemistry on tissue microarrays (TMAs). CK7 expression and SATB2-loss were associated with MUC5AC, MUC6, and claudin 18 positivity. These findings suggest a distinct "non-intestinal" immunohistochemical profile in CRC, often right-sided, SATB2-low, with atypical expression of CK7 and non-colorectal mucins (MUC5AC, MUC6). Strong MUC4 expression negatively impacted cancer-specific survival (hazard ratio = 2.7, p = 0.044). Genetic analysis via next-generation sequencing (NGS) in CK7 + CRCs and those with high MUC4 expression revealed prevalent mutations in TP53, APC, BRAF, KRAS, PIK3CA, FBXW7, and SMAD4, consistent with known CRC mutation patterns. NGS also identified druggable variants in BRAF, PIK3CA, and KRAS. CK7 + tumors showed intriguingly common (31.6%) BRAF V600E mutations corelating with poor prognosis, compared to the frequency described in the literature and databases. Further research on larger cohorts with a non-colorectal immunophenotype and high MUC4 expression is needed.
      (© 2024. The Author(s).)
    • References:
      Morgan, E. et al. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut72, 338–344 (2023). (PMID: 10.1136/gutjnl-2022-32773636604116)
      Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin.71, 209–249 (2021). (PMID: 10.3322/caac.2166033538338)
      Hrudka, J., Fišerová, H., Jelínková, K., Matěj, R. & Waldauf, P. Cytokeratin 7 expression as a predictor of an unfavorable prognosis in colorectal carcinoma. Sci. Rep.11, 17863 (2021). (PMID: 10.1038/s41598-021-97480-4345042248429687)
      Hrudka, J. et al. Loss of SATB2 expression correlates with cytokeratin 7 and PD-L1 tumor cell positivity and aggressiveness in colorectal cancer. Sci. Rep.12, 19152 (2022). (PMID: 10.1038/s41598-022-22685-0363519959646713)
      Shanmugam, C. et al. Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer116, 3577–3586 (2010). (PMID: 10.1002/cncr.2509520564074)
      Kubota, Y. et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open.8, 100762 (2023). (PMID: 10.1016/j.esmoop.2022.1007623661026210024138)
      Hrudka, J. et al. Undifferentiated carcinoma with osteoclast-like giant cells of the pancreas: Molecular genetic analysis of 13 cases. Int. J. Mol. Sci.25, 3285 (2024). (PMID: 10.3390/ijms250632853854225910970188)
      Erlenbach-Wünsch, K. Histomorphologische und molekularpathologische Prognosefaktoren beim kolorektalen Karzinom. Pathologe.41, 70–75 (2020). (PMID: 10.1007/s00292-020-00880-y33320288)
      Eberhard, J. et al. A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br. J. Cancer.106, 931–938 (2012). (PMID: 10.1038/bjc.2012.34223335993305956)
      Kim, C. J. et al. Value of SATB2 immunostaining in the distinction between small intestinal and colorectal adenocarcinomas. J. Clin. Pathol.69, 1046–1050 (2016). (PMID: 10.1136/jclinpath-2015-20358827169755)
      Imai, Y. et al. Differential mucin phenotypes and their significance in a variation of colorectal carcinoma. World J. Gastroenterol.19, 3957–3968 (2013). (PMID: 10.3748/wjg.v19.i25.3957238401403703182)
      Betge, J. et al. MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: Expression profiles and clinical significance. Virchows Arch.469, 255–265 (2016). (PMID: 10.1007/s00428-016-1970-5272982265007278)
      Kocer, B. et al. Expression of MUC5AC in colorectal carcinoma and relationship with prognosis. Pathol. Int.52, 470–477 (2002). (PMID: 10.1046/j.1440-1827.2002.01369.x12167106)
      Wang, H. et al. Expression of survivin, MUC2 and MUC5 in colorectal cancer and their association with clinicopathological characteristics. Oncol. Lett.14, 1011–1016 (2017). (PMID: 10.3892/ol.2017.6218286932675494796)
      Cox, K. E. et al. The mucin family of proteins: Candidates as potential biomarkers for colon cancer. Cancers (Basel).15, 1491 (2023). (PMID: 10.3390/cancers150514913690028210000725)
      Bartman, A. E. et al. Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps. Int. J. Cancer.80, 210–218 (1999). (PMID: 10.1002/(SICI)1097-0215(19990118)80:2<210::AID-IJC9>3.0.CO;2-U9935202)
      Owens, S. R., Chiosea, S. I. & Kuan, S. F. Selective expression of gastric mucin MUC6 in colonic sessile serrated adenoma but not in hyperplastic polyp aids in morphological diagnosis of serrated polyps. Mod. Pathol.21, 660–669 (2008). (PMID: 10.1038/modpathol.2008.5518360351)
      Leir, S. H. & Harris, A. MUC6 mucin expression inhibits tumor cell invasion. Exp. Cell Res.317, 2408–2419 (2011). (PMID: 10.1016/j.yexcr.2011.07.02121851820)
      Sanada, Y. et al. Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J. Pathol.208, 633–642 (2006). (PMID: 10.1002/path.192216435283)
      Kyuno, D. et al. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers.10, 1967080 (2022). (PMID: 10.1080/21688370.2021.196708034486479)
      Sentani, K. et al. Immunohistochemical staining of Reg IV and claudin-18 is useful in the diagnosis of gastrointestinal signet ring cell carcinoma. Am. J. Surg. Pathol.32, 1182–1189 (2008). (PMID: 10.1097/PAS.0b013e318163a8f818580680)
      Ungureanu, B. S. et al. Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: A meta-analysis. Front. Oncol.11, 643872 (2021). (PMID: 10.3389/fonc.2021.643872337479677969651)
      Arpa, G. et al. Claudin-18 expression in small bowel adenocarcinoma: A clinico-pathologic study. Virchows Arch.481, 853–863 (2022). (PMID: 10.1007/s00428-022-03393-6359253889734203)
      Matsuda, M. et al. Immunohistochemical analysis of colorectal cancer with gastric phenotype: Claudin-18 is associated with poor prognosis. Pathol. Int.60, 673–680 (2010). (PMID: 10.1111/j.1440-1827.2010.02587.x20846265)
      Moniaux, N. et al. Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br. J. Cancer.97, 345–357 (2007). (PMID: 10.1038/sj.bjc.6603868175956592360313)
      Chaturvedi, P., Singh, A. P. & Batra, S. K. Structure, evolution, and biology of the MUC4 mucin. FASEB J.22, 966–981 (2008). (PMID: 10.1096/fj.07-9673rev18024835)
      Chaturvedi, P. et al. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res.68, 2065–2070 (2008). (PMID: 10.1158/0008-5472.CAN-07-6041183814092835497)
      Miyahara, N. et al. MUC4 interacts with ErbB2 in human gallbladder carcinoma: potential pathobiological implications. Eur. J. Cancer.44, 1048–1056 (2008). (PMID: 10.1016/j.ejca.2008.03.00718397823)
      Komatsu, M., Jepson, S., Arango, M. E., Carothers Carraway, C. A. & Carraway, K. L. Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene20, 461–470 (2001). (PMID: 10.1038/sj.onc.120410611313977)
      Chaturvedi, P. et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol. Cancer Res.5, 309–320 (2007). (PMID: 10.1158/1541-7786.MCR-06-035317406026)
      Biemer-Hüttmann, A. E. et al. Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin. Cancer Res.6, 1909–1916 (2000). (PMID: 10815915)
      Pai, P. et al. MUC4 is negatively regulated through the Wnt/β-catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes Cancer.7, 154–168 (2016). (PMID: 10.18632/genesandcancer.108275513314979589)
      Huang, X. et al. Clinicopathological and prognostic significance of MUC4 expression in cancers: Evidence from meta-analysis. Int. J. Clin. Exp. Med.8, 10274–10283 (2015). (PMID: 263798194565202)
      Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell.61, 759–767 (1990). (PMID: 10.1016/0092-8674(90)90186-I2188735)
      Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology.138, 2059–2072 (2010). (PMID: 10.1053/j.gastro.2009.12.06520420946)
      Müller, M. F., Ibrahim, A. E. & Arends, M. J. Molecular pathological classification of colorectal cancer. Virchows Arch.469, 125–134 (2016). (PMID: 10.1007/s00428-016-1956-3273250164978761)
      Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science.318, 1108–1113 (2007). (PMID: 10.1126/science.114572017932254)
      Zhuang, Y. et al. Multi gene mutation signatures in colorectal cancer patients: Predict for the diagnosis, pathological classification, staging and prognosis. BMC Cancer.21, 380 (2021). (PMID: 10.1186/s12885-021-08108-9338366818034139)
      Liu, Z. et al. The landscape of somatic mutation in sporadic Chinese colorectal cancer. Oncotarget.9, 27412–27422 (2018). (PMID: 10.18632/oncotarget.25287299379946007951)
      Network, C. G. A. Comprehensive molecular characterization of human colon and rectal cancer. Nature.487, 330–337 (2012). (PMID: 10.1038/nature11252)
      Al-Shamsi, H. O. et al. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: Determination of frequency and distribution pattern. J. Gastrointest. Oncol.7, 882–902 (2016). (PMID: 10.21037/jgo.2016.11.02280781125177568)
      Hino, H. et al. Comprehensive genetic characterization of rectal cancer in a large cohort of Japanese patients: differences according to tumor location. J. Gastroenterol.57, 476–485 (2022). (PMID: 10.1007/s00535-022-01875-735449312)
      Oncokb.org. (accessed 19th Mar 2024).
      Chen, D. et al. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: A systematic review and meta-analysis. PLoS One9, e90607 (2014). (PMID: 10.1371/journal.pone.0090607245948043940924)
      Li, Y. & Li, W. BRAF mutation is associated with poor clinicopathological outcomes in colorectal cancer: A meta-analysis. Saudi J. Gastroenterol.23, 144–149 (2017). (PMID: 10.4103/1319-3767.207712286113375470373)
      Toon, C. W. et al. BRAFV600E immunohistochemistry in conjunction with mismatch repair status predicts survival in patients with colorectal cancer. Mod. Pathol.27, 644–650 (2014). (PMID: 10.1038/modpathol.2013.20024157612)
      Loupakis, F. et al. CK7 and consensus molecular subtypes as major prognosticators in V600EBRAF mutated metastatic colorectal cancer. Br. J. Cancer121, 593–599 (2019). (PMID: 10.1038/s41416-019-0560-0314747586889398)
      Varkaris, A. et al. Discovery and clinical proof-of-concept of RLY-2608, a first-in-class mutant-selective allosteric PI3Kα inhibitor that decouples antitumor activity from hyperinsulinemia. Cancer Discov.14, 240–257 (2024). (PMID: 10.1158/2159-8290.CD-23-094437916956)
    • Grant Information:
      Cooperatio Medical Diagnostics and Basic Medical Sciences Univerzita Karlova v Praze; Cooperatio Medical Diagnostics and Basic Medical Sciences Univerzita Karlova v Praze; Cooperatio Medical Diagnostics and Basic Medical Sciences Univerzita Karlova v Praze
    • Contributed Indexing:
      Keywords: Claudin 18; Colorectal carcinoma; Cytokeratin 7; Mucin; NGS; SATB2
    • الرقم المعرف:
      0 (SATB2 protein, human)
      0 (Biomarkers, Tumor)
      0 (Matrix Attachment Region Binding Proteins)
      0 (Keratin-7)
      0 (Mucin 5AC)
      0 (MUC5AC protein, human)
      0 (Mucin-6)
      0 (Mucin-4)
      EC 2.7.11.1 (Proto-Oncogene Proteins B-raf)
      0 (MUC4 protein, human)
      0 (MUC6 protein, human)
      0 (KRAS protein, human)
      EC 2.7.11.1 (BRAF protein, human)
      EC 2.7.1.137 (Class I Phosphatidylinositol 3-Kinases)
      EC 2.7.1.137 (PIK3CA protein, human)
      EC 3.6.5.2 (Proto-Oncogene Proteins p21(ras))
      0 (Transcription Factors)
    • الموضوع:
      Date Created: 20240927 Date Completed: 20240927 Latest Revision: 20241001
    • الموضوع:
      20241002
    • الرقم المعرف:
      PMC11437151
    • الرقم المعرف:
      10.1038/s41598-024-72687-3
    • الرقم المعرف:
      39333321