Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Understanding carbon resilience under public health emergencies: a synthetic difference-in-differences approach.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Public health emergencies influence urban carbon emissions, yet an in-depth understanding of deviations between regional emissions under such emergencies and normal levels is lacking. Inspired by the concept of resilience, we introduce the concept of regional carbon resilience and propose four resilience indicators covering periods during and after emergencies. A synthetic difference-in-differences model is employed to compute these indicators, providing a more suitable approach than traditional methods assuming unchanged levels before and after emergencies. Using the COVID-19 pandemic in China as a case study, focusing on the power and industry sectors, we find that over 40% regions exhibit strong resilience (> 0.9). Average in-resilience (0.764 and 0.783) is higher than post-resilience (0.534 and 0.598) in both sectors, indicating lower resilience during than after emergencies. Significant differences in resilience performance exist across regions, with Hebei (0.93) and Hangzhou (0.92) as top performers, and Qinghai (0.29) and Guiyang (0.36) as the least resilient. Furthermore, a preliminary correlation analysis identifies 22 factors affecting carbon resilience; higher energy consumption, stronger industrial production, and a healthier regional economy positively contribute to resilience with coefficients over + 0.3, while pandemic severity negatively impacts resilience, with coefficients up to -0.58. These findings provide valuable references for policymaking to achieve carbon neutrality goals.
      (© 2024. The Author(s).)
    • References:
      Chen, L. et al. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 20, 2277–2310 (2022). (PMID: 35431715899241610.1007/s10311-022-01435-8)
      Farghali, M. et al. Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: A review. Environ. Chem. Lett. 21, 1381–1418 (2023). (PMID: 10.1007/s10311-023-01587-1)
      Osman, A. I. et al. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 21, 741–764 (2023). (PMID: 10.1007/s10311-022-01532-8)
      Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017). (PMID: 2833662810.1126/science.aah3443)
      Loftus, P. J., Cohen, A. M., Long, J. C. & Jenkins, J. D. A critical review of global decarbonization scenarios: What do they tell us about feasibility?. Wiley Interdiscip. Rev. Clim. Change 6, 93–112 (2015). (PMID: 10.1002/wcc.324)
      Yuan, H. et al. Progress towards the Sustainable Development Goals has been slowed by indirect effects of the COVID-19 pandemic. Commun. Earth Environ. 4, 184 (2023). (PMID: 10.1038/s43247-023-00846-x)
      Li, K. et al. The regional impact of the COVID-19 lockdown on the air quality in Ji’nan, China. Sci. Rep. 12, 12099 (2022). (PMID: 35840644928449710.1038/s41598-022-16105-6)
      Regules, R. et al. Climate-related experiences and harms in the wake of the COVID-19 pandemic: Results from a survey of 152,088 Mexican youth. Sci. Rep. 13, 16549 (2023). (PMID: 377837501054575010.1038/s41598-023-43305-5)
      Kupferschmidt, K. & Wadman, M. End of COVID-19 emergencies sparks debate. Science 380, 566–567 (2023). (PMID: 3716740010.1126/science.adi6511)
      He, G., Pan, Y. & Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 3, 1005–1011 (2020). (PMID: 10.1038/s41893-020-0581-y)
      Le Quéré, C. et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 10, 647–653 (2020). (PMID: 10.1038/s41558-020-0797-x)
      Le Quéré, C. et al. Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Change 11, 197–199 (2021). (PMID: 10.1038/s41558-021-01001-0)
      Forster, P. M. et al. Current and future global climate impacts resulting from COVID-19. Nature Climate Change 10, 913–919 (2020). (PMID: 10.1038/s41558-020-0883-0)
      Wei, L. et al. Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19. Nat. Commun. 13, 1839 (2022). (PMID: 35383203898376110.1038/s41467-022-29468-1)
      Manyena, B., O’Brien, G., O’Keefe, P. & Rose, J. Disaster resilience: A bounce back or bounce forward ability?. Local Environ. Int. J. Justice Sustain 16, 417–424 (2011).
      Bogardi, J. J. & Fekete, A. Disaster-related resilience as ability and process: A concept guiding the analysis of response behavior before, during and after extreme events. Am. J. Clim. Change 7, 54–78 (2018). (PMID: 10.4236/ajcc.2018.71006)
      Huang, G., Li, D., Zhu, X. & Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 74, 103210 (2021). (PMID: 10.1016/j.scs.2021.103210)
      Holling, C. S. Resilience and stability of ecological systems. (1973).
      Sutton, J. & Arku, G. Regional economic resilience: Towards a system approach. Reg. Stud. Reg. Sci. 9, 497–512 (2022).
      Meerow, S., Newell, J. P. & Stults, M. Defining urban resilience: A review. Landscape Urban Plan. 147, 38–49 (2016). (PMID: 10.1016/j.landurbplan.2015.11.011)
      Ribeiro, P. J. G. & Gonçalves, L. A. P. J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 50, 101625 (2019). (PMID: 10.1016/j.scs.2019.101625)
      Lee, S., Kim, J. & Cho, K. Temporal dynamics of public transportation ridership in Seoul before, during, and after COVID-19 from urban resilience perspective. Sci. Rep. 14, 8981 (2024). (PMID: 386375701102640510.1038/s41598-024-59323-w)
      Pendall, R., Foster, K. A. & Cowell, M. Resilience and regions: Building understanding of the metaphor. Cambridge J. Regions Econ. Soc. 3, 71–84 (2010). (PMID: 10.1093/cjres/rsp028)
      Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W. & Wager, S. Synthetic Difference in Differences (National Bureau of Economic Research, 2019). (PMID: 10.3386/w25532)
      Lopez Bernal, J., Cummins, S. & Gasparrini, A. Difference in difference, controlled interrupted time series and synthetic controls. Int. J. Epidemiol. 48, 2062–2063 (2019). (PMID: 3090492610.1093/ije/dyz050)
      Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022). (PMID: 10.1038/s43017-021-00244-x)
      Liu, W., Yue, X.-G. & Tchounwou, P. B. Vol. 17, 2304 (MDPI, 2020).
      Shan, Y. et al. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Change 11, 200–206 (2021). (PMID: 10.1038/s41558-020-00977-5)
      Shen, L. et al. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 94, 357–366 (2018). (PMID: 10.1016/j.ecolind.2018.06.068)
      Bruninx, K. & Ovaere, M. COVID-19, Green Deal and recovery plan permanently change emissions and prices in EU ETS Phase IV. Nat. Commun. 13, 1165 (2022). (PMID: 35246534889750410.1038/s41467-022-28398-2)
      Yi, W., Yuan, X., Lu, Q., Lin, P. & Wang, Q. The Development Report of China Metropolitan Area in 2018. (2018).
      Qi, J. et al. Short-and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China. Nat. Hum. Behav. 6, 55–63 (2022). (PMID: 3484535810.1038/s41562-021-01189-3)
      Liu, Z. et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 11, 5172 (2020). (PMID: 33057164756073310.1038/s41467-020-18922-7)
      Liu, Z. et al. Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. 15, 615–620 (2022). (PMID: 10.1038/s41561-022-00965-8)
      Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W. & Wager, S. Synthetic difference-in-differences. Am. Econ. Rev. 111, 4088–4118 (2021). (PMID: 10.1257/aer.20190159)
      Rebekić, A., Lončarić, Z., Petrović, S. & Marić, S. Pearson’s or Spearman’s correlation coefficient-which one to use?. Poljoprivreda 21, 47–54 (2015). (PMID: 10.18047/poljo.21.2.8)
      Rana, R. & Singhal, R. Chi-square test and its application in hypothesis testing. J. Pract. Cardiovasc. Sci. 1, 69 (2015). (PMID: 10.4103/2395-5414.157577)
      Yang, Z. et al. Clinical characteristics, transmissibility, pathogenicity, susceptible populations, and re-infectivity of prominent COVID-19 variants. Aging Dis. 13, 402 (2022). (PMID: 35371608894783610.14336/AD.2021.1210)
      Davis, S. J. et al. Emissions rebound from the COVID-19 pandemic. Nat. Clim. Change 12, 412–414 (2022). (PMID: 10.1038/s41558-022-01332-6)
      Luke, M., Somani, P., Cotterman, T., Suri, D. & Lee, S. J. No COVID-19 climate silver lining in the US power sector. Nat. Commun. 12, 4675 (2021). (PMID: 34344875833336810.1038/s41467-021-24959-z)
      Habibi, Z., Habibi, H. & Mohammadi, M. A. The potential impact of COVID-19 on the Chinese GDP, trade, and economy. Economies 10, 73 (2022). (PMID: 10.3390/economies10040073)
      Hans, F., Woollands, S., Nascimento, L., Höhne, N. & Kuramochi, T. Unpacking the COVID-19 rescue and recovery spending: an assessment of implications on greenhouse gas emissions towards 2030 for key emitters. Clim. Action 1, 3 (2022). (PMID: 10.1007/s44168-022-00002-9)
      Nottmeyer, L. et al. The association of COVID-19 incidence with temperature, humidity, and UV radiation–A global multi-city analysis. Sci. Total Environ. 854, 158636 (2023). (PMID: 3608767010.1016/j.scitotenv.2022.158636)
      Song, Z. & Kuenzer, C. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 133, 72–99 (2014). (PMID: 10.1016/j.coal.2014.09.004)
      Tang, B. et al. Lessons drawn from China and South Korea for managing COVID-19 epidemic: Insights from a comparative modeling study. ISA Trans. 124, 164–175 (2022). (PMID: 3516496310.1016/j.isatra.2021.12.004)
      Li, L., Zhang, S., Wang, J., Yang, X. & Wang, L. Governing public health emergencies during the coronavirus disease outbreak: Lessons from four Chinese cities in the first wave. Urban Stud. 60, 1750–1770 (2023). (PMID: 3741683610.1177/00420980211049350)
      Sutton, J., Arku, G., Sadler, R., Hutchenreuther, J. & Buzzelli, M. Practitioners’ ability to retool the economy: The role of agency in local economic resilience to plant closures in Ontario. Growth Change 55, e12716 (2024). (PMID: 10.1111/grow.12716)
      Liu, J. et al. Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management. Appl. Energy 331, 120407 (2023). (PMID: 10.1016/j.apenergy.2022.120407)
      He, A. J., Shi, Y. & Liu, H. Crisis governance, Chinese style: Distinctive features of China’s response to the Covid-19 pandemic. Policy Design Pract. 3, 242–258 (2020). (PMID: 10.1080/25741292.2020.1799911)
    • Grant Information:
      52208324 National Natural Science Foundation of China; 72204248 National Natural Science Foundation of China; 15219422 Research Grants Council of the Hong Kong SAR
    • الرقم المعرف:
      7440-44-0 (Carbon)
    • الموضوع:
      Date Created: 20240904 Date Completed: 20240904 Latest Revision: 20241001
    • الموضوع:
      20241002
    • الرقم المعرف:
      PMC11374798
    • الرقم المعرف:
      10.1038/s41598-024-69785-7
    • الرقم المعرف:
      39231984