Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Research progress and application prospect of adipose-derived stem cell secretome in diabetes foot ulcers healing.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Wan X;Wan X;Wan X; Ni X; Ni X; Ni X; Xie Y; Xie Y; Chen L; Chen L; Cai B; Cai B; Cai B; Lin Q; Lin Q; Ke R; Ke R; Huang T; Huang T; Shan X; Shan X; Shan X; Wang B; Wang B; Wang B
- المصدر:
Stem cell research & therapy [Stem Cell Res Ther] 2024 Sep 04; Vol. 15 (1), pp. 279. Date of Electronic Publication: 2024 Sep 04.- نوع النشر :
Journal Article; Review- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: BioMed Central Country of Publication: England NLM ID: 101527581 Publication Model: Electronic Cited Medium: Internet ISSN: 1757-6512 (Electronic) Linking ISSN: 17576512 NLM ISO Abbreviation: Stem Cell Res Ther Subsets: MEDLINE
- بيانات النشر: Original Publication: London : BioMed Central
- الموضوع:
- نبذة مختصرة : Diabetic foot ulcers (DFUs) are chronic wounds and one of the most common complications of diabetes, imposing significant physical and mental burdens on patients due to their poor prognosis and treatment efficacy. Adipose-derived stem cells (ADSCs) have been proven to promote wound healing, with studies increasingly attributing these beneficial effects to their paracrine actions. Consequently, research on ADSC secretome as a novel and promising alternative for DFU treatment has been extensively conducted. This article provides a comprehensive review of the mechanisms underlying refractory DFU wounds, the secretome of ADSCs, and its role in promoting wound healing in diabetes foot ulcers. And the review aims to provide reliable evidence for the clinical application of ADSC secretome in the treatment of refractory DFU wounds.
(© 2024. The Author(s).) - References: Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. (PMID: 3487997710.1016/j.diabres.2021.109119)
Ji L. Current challenges of diabetes and metabolic disorders in China. Diabetes Obes Metab. 2023;25(Suppl 1):3–4. (PMID: 3688066410.1111/dom.15048)
McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care. 2023;46(1):209–21. (PMID: 3654870910.2337/dci22-0043)
Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, Cid-Baez MA, Zamudio-Osuna MJ, Martinez-Blanco MDR, et al. Current therapeutic strategies in diabetic foot ulcers. Med (Kaunas). 2019;55(11):714.
Oyebode OA, Jere SW, Houreld NN. Current therapeutic modalities for the management of chronic diabetic wounds of the foot. J Diabetes Res. 2023;2023:1359537. (PMID: 36818748993776610.1155/2023/1359537)
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, et al. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev. 2024;40(3):e3644. (PMID: 3723203410.1002/dmrr.3644)
Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16(4):557–64. (PMID: 8528172)
Yuan T, Meijia L, Xinyao C, Xinyue C, Lijun H. Exosome derived from human adipose-derived stem cell improve wound healing quality: a systematic review and meta-analysis of preclinical animal studies. Int Wound J. 2023;20(6):2424–39. (PMID: 371022691033300710.1111/iwj.14081)
Huayllani MT, Sarabia-Estrada R, Restrepo DJ, Boczar D, Sisti A, Nguyen JH, et al. Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature(). J Plast Surg Hand Surg. 2020;54(5):263–79. (PMID: 3242701610.1080/2000656X.2020.1767116)
Iacomi DM, Rosca AM, Tutuianu R, Neagu TP, Pruna V, Simionescu M, et al. Generation of an immortalized human adipose-derived mesenchymal stromal cell line suitable for wound healing therapy. Int J Mol Sci. 2022;23(16):8925. (PMID: 36012192940859110.3390/ijms23168925)
Ni X, Shan X, Xu L, Yu W, Zhang M, Lei C, et al. Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects. Stem Cell Res Ther. 2021;12(1):226. (PMID: 33823915802231710.1186/s13287-021-02257-1)
Zhou Y, Zhao B, Zhang XL, Lu YJ, Lu ST, Cheng J, et al. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther. 2021;12(1):257. (PMID: 33933157808804410.1186/s13287-021-02287-9)
Singer AJ. Healing mechanisms in cutaneous wounds: tipping the balance. Tissue Eng Part B Rev. 2022;28(5):1151–67. (PMID: 34915757958778510.1089/ten.teb.2021.0114)
Nowak NC, Menichella DM, Miller R, Paller AS. Cutaneous innervation in impaired diabetic wound healing. Transl Res. 2021;236:87–108. (PMID: 34029747838064210.1016/j.trsl.2021.05.003)
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41. (PMID: 3119715310.1038/s41572-019-0092-1)
Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic foot ulcers: a review. JAMA. 2023;330(1):62–75. (PMID: 373957691072380210.1001/jama.2023.10578)
Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–75. (PMID: 2861467810.1056/NEJMra1615439)
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017;93(6):1296–313. (PMID: 28334605540001510.1016/j.neuron.2017.02.005)
Deng H, Li B, Shen Q, Zhang C, Kuang L, Chen R, et al. Mechanisms of diabetic foot ulceration: a review. J Diabetes. 2023;15(4):299–312. (PMID: 368917831010184210.1111/1753-0407.13372)
Nguyen DT, Zaferanieh MH, Black AC Jr, Hamedi KR, Goodwin RL, Nathaniel TI. Obstetric neuropathy in diabetic patients: the “double hit hypothesis.” Int J Mol Sci. 2023;24(7):6812. (PMID: 370477861009491110.3390/ijms24076812)
Sharma S, Schaper N, Rayman G. Microangiopathy: is it relevant to wound healing in diabetic foot disease? Diabetes Metab Res Rev. 2020;36(Suppl 1): e3244. (PMID: 3184546110.1002/dmrr.3244)
Schratzberger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest. 2001;107(9):1083–92. (PMID: 1134257220928310.1172/JCI12188)
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. (PMID: 21593862404944510.1038/nature10144)
Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23(7):1185–9. (PMID: 1271443910.1161/01.ATV.0000073832.49290.B5)
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7. (PMID: 902007610.1126/science.275.5302.964)
Pyšná A, Bém R, Němcová A, Fejfarová V, Jirkovská A, Hazdrová J, et al. Endothelial progenitor cells biology in diabetes mellitus and peripheral arterial disease and their therapeutic potential. Stem Cell Rev Rep. 2019;15(2):157–65. (PMID: 3041393010.1007/s12015-018-9863-4)
Holt RIG, Cockram CS, Ma RCW, Luk AOY. Diabetes and infection: review of the epidemiology, mechanisms and principles of treatment. Diabetologia. 2024;67(7):1168–80. (PMID: 383744511115329510.1007/s00125-024-06102-x)
Radzieta M, Sadeghpour-Heravi F, Peters TJ, Hu H, Vickery K, Jeffries T, et al. A multiomics approach to identify host-microbe alterations associated with infection severity in diabetic foot infections: a pilot study. NPJ Biofilms Microbiomes. 2021;7(1):29. (PMID: 33753735798551310.1038/s41522-021-00202-x)
Pouget C, Dunyach-Remy C, Pantel A, Schuldiner S, Sotto A, Lavigne JP. Biofilms in diabetic foot ulcers: significance and clinical relevance. Microorganisms. 2020;8(10):1580. (PMID: 33066595760239410.3390/microorganisms8101580)
Raja JM, Maturana MA, Kayali S, Khouzam A, Efeovbokhan N. Diabetic foot ulcer: a comprehensive review of pathophysiology and management modalities. World J Clin Cases. 2023;11(8):1684–93. (PMID: 369700041003728310.12998/wjcc.v11.i8.1684)
Cai Y, Chen K, Liu C, Qu X. Harnessing strategies for enhancing diabetic wound healing from the perspective of spatial inflammation patterns. Bioact Mater. 2023;28:243–54. (PMID: 3729223110245071)
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular pathophysiology of chronic wounds: current state and future directions. Cold Spring Harb Perspect Biol. 2023;15(4):a041243. (PMID: 3612303110.1101/cshperspect.a041243)
Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell Biosci. 2022;12(1):117. (PMID: 35897082932723810.1186/s13578-022-00856-w)
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28. (PMID: 1130445610.1089/107632701300062859)
Trzyna A, Banaś-Ząbczyk A. Adipose-derived stem cells secretome and its potential application in “stem cell-free therapy.” Biomolecules. 2021;11(6):878. (PMID: 34199330823199610.3390/biom11060878)
Czerwiec K, Zawrzykraj M, Deptuła M, Skoniecka A, Tymińska A, Zieliński J, et al. Adipose-derived mesenchymal stromal cells in basic research and clinical applications. Int J Mol Sci. 2023;24(4):3888. (PMID: 36835295996263910.3390/ijms24043888)
Yuan X, Li L, Liu H, Luo J, Zhao Y, Pan C, et al. Strategies for improving adipose-derived stem cells for tissue regeneration. Burns Trauma. 2022;10:tkac028. (PMID: 35992369938209610.1093/burnst/tkac028)
Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc. 2011;6(1):78–88. (PMID: 2121277710.1038/nprot.2010.173)
Flamant S, Loinard C, Tamarat R. MSC beneficial effects and limitations, and MSC-derived extracellular vesicles as a new cell-free therapy for tissue regeneration in irradiated condition. Environ Adv. 2023;13:100408. (PMID: 10.1016/j.envadv.2023.100408)
An YH, Kim DH, Lee EJ, Lee D, Park MJ, Ko J, et al. High-efficient production of adipose-derived stem cell (ADSC) secretome through maturation process and its non-scarring wound healing applications. Front Bioeng Biotechnol. 2021;9:681501. (PMID: 34222219824258310.3389/fbioe.2021.681501)
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev. 2000;64(3):515–47. (PMID: 109741259900310.1128/MMBR.64.3.515-547.2000)
Ajit A, Ambika GI. Adipose-derived stem cell secretome as a cell-free product for cutaneous wound healing. 3 Biotech. 2021;11(9):413. (PMID: 34476171836852310.1007/s13205-021-02958-7)
Kumar L, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K, Verma RS. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9. (PMID: 10.1016/j.cytogfr.2019.04.002)
De Gregorio C, Contador D, Díaz D, Cárcamo C, Santapau D, Lobos-Gonzalez L, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther. 2020;11(1):168. (PMID: 32357914719580310.1186/s13287-020-01680-0)
Bormann D, Gugerell A, Ankersmit HJ, Mildner M. Therapeutic application of cell secretomes in cutaneous wound healing. J Invest Dermatol. 2023;143(6):893–912. (PMID: 3721137710.1016/j.jid.2023.02.019)
Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. (PMID: 383262881085002910.1002/jev2.12404)
Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10(1):36. (PMID: 3758753110433599)
Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: emerging frontiers in wound healing. Med Res Rev. 2022;42(6):2102–25. (PMID: 3575797910.1002/med.21918)
Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 2015;25(1):24–38. (PMID: 2534256210.1038/cr.2014.135)
Jiao H, Li X, Li Y, Guo Y, Hu X, Sho T, et al. Localized, highly efficient secretion of signaling proteins by migrasomes. Cell Res. 2024;34(8):572–85. (PMID: 389185841129191610.1038/s41422-024-00992-7)
Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther. 2020;11(1):312. (PMID: 32698868737496710.1186/s13287-020-01831-3)
Rau CS, Kuo PJ, Wu SC, Huang LH, Lu TH, Wu YC, et al. Enhanced nerve regeneration by exosomes secreted by adipose-derived stem cells with or without FK506 stimulation. Int J Mol Sci. 2021;22(16):8545. (PMID: 34445251839516110.3390/ijms22168545)
Chen J, Li G, Liu X, Chen K, Wang Y, Qin J, et al. Delivery of miR-130a-3p through adipose-derived stem cell-secreted EVs protects against diabetic peripheral neuropathy via DNMT1/NRF2/HIF1α/ACTA1 Axis. Mol Neurobiol. 2023;60(7):3678–94. (PMID: 3693314510.1007/s12035-023-03297-9)
Yin G, Yu B, Liu C, Lin Y, Xie Z, Hu Y, et al. Exosomes produced by adipose-derived stem cells inhibit schwann cells autophagy and promote the regeneration of the myelin sheath. Int J Biochem Cell Biol. 2021;132:105921. (PMID: 3342163210.1016/j.biocel.2021.105921)
Pi L, Yang L, Fang BR, Meng XX, Qian L. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol Cell Biochem. 2022;477(1):115–27. (PMID: 3458194210.1007/s11010-021-04251-w)
Ma J, Zhang Z, Wang Y, Shen H. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects. Exp Dermatol. 2022;31(3):362–74. (PMID: 3469464810.1111/exd.14480)
Shi R, Jin Y, Hu W, Lian W, Cao C, Han S, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. Am J Physiol Cell Physiol. 2020;318(5):C848–56. (PMID: 3215936110.1152/ajpcell.00041.2020)
Zhu LL, Huang X, Yu W, Chen H, Chen Y, Dai YT. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia. 2018;50(2):e12871. (PMID: 10.1111/and.12871)
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8. (PMID: 1499312210.1161/01.CIR.0000121425.42966.F1)
Sun D, Mou S, Chen L, Yang J, Wang R, Zhong A, et al. High yield engineered nanovesicles from ADSC with enriched miR-21-5p promote angiogenesis in adipose tissue regeneration. Biomater Res. 2022;26(1):83. (PMID: 36528594975893210.1186/s40824-022-00325-y)
Sun Y, Ju Y, Fang B. Exosomes from human adipose-derived mesenchymal stromal/stem cells accelerate angiogenesis in wound healing: implication of the EGR-1/lncRNA-SENCR/DKC1/VEGF-A axis. Hum Cell. 2022;35(5):1375–90. (PMID: 3575179510.1007/s13577-022-00732-2)
Zhang Y, Bai X, Shen K, Luo L, Zhao M, Xu C, et al. Exosomes derived from adipose mesenchymal stem cells promote diabetic chronic wound healing through SIRT3/SOD2. Cells. 2022;11(16):2568. (PMID: 36010644940629910.3390/cells11162568)
Li X, Xie X, Lian W, Shi R, Han S, Zhang H, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018;50(4):1–14. (PMID: 30559383620442910.1038/s12276-018-0058-5)
Deniz IA, Karbanová J, Wobus M, Bornhäuser M, Wimberger P, Kuhlmann JD, et al. Mesenchymal stromal cell-associated migrasomes: a new source of chemoattractant for cells of hematopoietic origin. Cell Commun Signal. 2023;21(1):36. (PMID: 36788616992684210.1186/s12964-022-01028-6)
Zhang Y, Zhang YY, Pan ZW, Li QQ, Sun LH, Li X, et al. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol Sin. 2023;44(5):999–1013. (PMID: 3634799610.1038/s41401-022-01013-2)
Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5:556. (PMID: 25414703422014610.3389/fimmu.2014.00556)
Franz S, Ertel A, Engel KM, Simon JC, Saalbach A. Overexpression of S100A9 in obesity impairs macrophage differentiation via TLR4-NFkB-signaling worsening inflammation and wound healing. Theranostics. 2022;12(4):1659–82. (PMID: 35198063882559010.7150/thno.67174)
Li R, Li D, Wang H, Chen K, Wang S, Xu J, et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther. 2022;13(1):149. (PMID: 35395782899425610.1186/s13287-022-02823-1)
Maguire G. The safe and efficacious use of secretome from fibroblasts and adipose-derived (but not bone marrow-derived) mesenchymal stem cells for skin therapeutics. J Clin Aesthet Dermatol. 2019;12(8):E57-e69. (PMID: 315311746715117)
Yu H, Zhang B, Zhan Y, Yi Y, Jiang Q, Zhang Q, et al. Neutrophil extracellular trap-related mechanisms in acne vulgaris inspire a novel treatment strategy with adipose-derived stem cells. Sci Rep. 2024;14(1):1521. (PMID: 382335401079417810.1038/s41598-024-51931-w)
He L, Zhu C, Jia J, Hao XY, Yu XY, Liu XY, et al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. 2020. Biosci Rep. https://doi.org/10.1042/BSR20192549 .
Li J, Li Z, Wang S, Bi J, Huo R. Exosomes from human adipose-derived mesenchymal stem cells inhibit production of extracellular matrix in keloid fibroblasts via downregulating transforming growth factor-β2 and Notch-1 expression. Bioengineered. 2022;13(4):8515–25. (PMID: 35333672916187910.1080/21655979.2022.2051838)
Zhang C, Wang T, Zhang L, Chen P, Tang S, Chen A, et al. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring. Stem Cell Res Ther. 2021;12(1):23. (PMID: 33413617779205910.1186/s13287-020-02061-3)
Hermann M, Peddi A, Gerhards A, Schmid R, Schmitz D, Arkudas A, et al. Secretome of adipose-derived stem cells cultured in platelet lysate improves migration and viability of keratinocytes. Int J Mol Sci. 2023;24(4):3522. (PMID: 36834932996293310.3390/ijms24043522)
Nuutila K. Hair follicle transplantation for wound repair. Adv Wound Care (New Rochelle). 2021;10(3):153–63. (PMID: 3252210110.1089/wound.2019.1139)
Wang Y, Cheng L, Zhao H, Li Z, Chen J, Cen Y, et al. The Therapeutic role of ADSC-EVs in skin regeneration. Front Med (Lausanne). 2022;9:858824. (PMID: 3575502310.3389/fmed.2022.858824)
Shin KO, Ha DH, Kim JO, Crumrine DA, Meyer JM, Wakefield JS, et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cells. 2020;9(3):680. (PMID: 32164386714072310.3390/cells9030680)
Kalinina N, Kharlampieva D, Loguinova M, Butenko I, Pobeguts O, Efimenko A, et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res Ther. 2015;6:221. (PMID: 26560317464268010.1186/s13287-015-0209-8)
Huang LH, Rau CS, Wu SC, Wu YC, Wu CJ, Tsai CW, et al. Identification and characterization of hADSC-derived exosome proteins from different isolation methods. J Cell Mol Med. 2021;25(15):7436–50. (PMID: 34235869833568110.1111/jcmm.16775)
Wang S, Su X, Xu M, Xiao X, Li X, Li H, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res Ther. 2019;10(1):117. (PMID: 30971292645863810.1186/s13287-019-1220-2)
Qian L, Li B, Pi L, Fang B, Meng X. Hypoxic adipose stem cell-derived exosomes carrying high-abundant USP22 facilitate cutaneous wound healing through stabilizing HIF-1α and upregulating lncRNA H19. Faseb j. 2024;38(10):e23653. (PMID: 3873854810.1096/fj.202301403RR)
Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;13:308. (PMID: 26386558457547010.1186/s12967-015-0642-6)
Bai Y, Han YD, Yan XL, Ren J, Zeng Q, Li XD, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochem Biophys Res Commun. 2018;500(2):310–7. (PMID: 2965476510.1016/j.bbrc.2018.04.065)
Yu H, Wu Y, Zhang B, Xiong M, Yi Y, Zhang Q, et al. Exosomes derived from E2F1(-/-) adipose-derived stem cells promote skin wound healing via miR-130b-5p/TGFBR3 Axis. Int J Nanomedicine. 2023;18:6275–92. (PMID: 379415301062945310.2147/IJN.S431725)
Ju Y, Hu Y, Yang P, Xie X, Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 2023;18:100522. (PMID: 3659391310.1016/j.mtbio.2022.100522)
Jiang W, Zhan Y, Zhang Y, Sun D, Zhang G, Wang Z, et al. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Biomaterials. 2024;308:122566. (PMID: 3860382410.1016/j.biomaterials.2024.122566)
Park BS, Kim WS, Choi JS, Kim HK, Won JH, Ohkubo F, et al. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res. 2010;31(1):27–34. (PMID: 2020341710.2220/biomedres.31.27)
Edmondson SR, Thumiger SP, Werther GA, Wraight CJ. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev. 2003;24(6):737–64. (PMID: 1467100110.1210/er.2002-0021)
Leone A, Nicolò A, Prevenzano I, Zatterale F, Longo M, Desiderio A, et al. Methylglyoxal impairs the pro-angiogenic ability of mouse adipose-derived stem cells (mADSCs) via a senescence-associated mechanism. Cells. 2023;12(13):1741. (PMID: 374437751034047010.3390/cells12131741)
Wiśniewska J, Słyszewska M, Stałanowska K, Walendzik K, Kopcewicz M, Machcińska S, et al. Effect of pig-adipose-derived stem cells’ conditioned media on skin wound-healing characteristics in vitro. Int J Mol Sci. 2021;22(11):5469. (PMID: 34067360819686310.3390/ijms22115469)
Wang L, Li H, Lin J, He R, Chen M, Zhang Y, et al. CCR2 improves homing and engraftment of adipose-derived stem cells in dystrophic mice. Stem Cell Res Ther. 2021;12(1):12. (PMID: 33413615779173610.1186/s13287-020-02065-z)
Zhang H, Ning H, Banie L, Wang G, Lin G, Lue TF, et al. Adipose tissue-derived stem cells secrete CXCL5 cytokine with chemoattractant and angiogenic properties. Biochem Biophys Res Commun. 2010;402(3):560–4. (PMID: 21034724353041210.1016/j.bbrc.2010.10.090)
Wang WT, Lee SS, Wang YC, Lai YW, Kuo YR, Tang Chen YB, et al. Impaired cutaneous T-cell attracting chemokine elevation and adipose-derived stromal cell migration in a high-glucose environment cause poor diabetic wound healing. Kaohsiung J Med Sci. 2018;34(10):539–46. (PMID: 3030948110.1016/j.kjms.2018.05.002)
Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim BS. Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther. 2014;22(4):862–72. (PMID: 24413377398249610.1038/mt.2013.301) - Grant Information: 2020GGB029 Young and Middle-aged Key Personnel Training Project of Fujian Provincial Health Commission; 2020Y9124 Joint Funds for the Innovation of Science and Technology, Fujian Province; 2021J01244 Natural Science Fundation of Fujian Province
- Contributed Indexing: Keywords: Adipose-derived stem cells; Diabetic foot ulcers; Secretome; Wound healing
- الموضوع: Date Created: 20240903 Date Completed: 20240904 Latest Revision: 20240922
- الموضوع: 20240923
- الرقم المعرف: PMC11373215
- الرقم المعرف: 10.1186/s13287-024-03912-z
- الرقم المعرف: 39227906
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.