Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The importance of reproductive isolation in driving diversification and speciation within Peruvian mimetic poison frogs (Dendrobatidae).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      To explain how populations with distinct warning signals coexist in close parapatry, we experimentally assessed intrinsic mechanisms acting as reproductive barriers within three poison-frog species from the Peruvian Amazon belonging to a Müllerian mimetic ring (Ranitomeya variabilis, Ranitomeya imitator and Ranitomeya fantastica). We tested the role of prezygotic and postzygotic isolation barriers between phenotypically different ecotypes of each species, using no-choice mating experiments and offspring survival analysis. Our results show that prezygotic mating preference did not occur except for one specific ecotype of R. imitator, and that all three species were able to produce viable inter-population F1 hybrids. However, while R. variabilis and R. imitator hybrids were able to produce viable F2 generations, we found that for R. fantastica, every F1 hybrid males were sterile while females remained fertile. This unexpected result, echoing with Haldane's rule of speciation, validated phylogenetic studies which tentatively diagnose these populations of R. fantastica as two different species. Our work suggests that postzygotic genetic barriers likely participate in the extraordinary phenotypic diversity observed within Müllerian mimetic Ranitomeya populations, by maintaining species boundaries.
      (© 2024. The Author(s).)
    • References:
      Faria, R. et al. Advances in ecological speciation: An integrative approach. Mol. Ecol. 23, 513–521 (2014). (PMID: 10.1111/mec.1261624354648)
      Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003). (PMID: 10.1038/nature0127412529641)
      Mayr, E. & Mayr, E. Systematics and the Origin of Species (Columbia University Press, 1942).
      Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140 (2011). (PMID: 10.1111/j.1365-294X.2011.05350.x22066935)
      Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007). (PMID: 10.1111/j.1365-2435.2006.01228.x)
      Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020). (PMID: 10.1038/s41586-020-2845-0331163087759464)
      Merot, C., Salazar, C., Merrill, R. M., Jiggins, C. D. & Joron, M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. (2017).
      Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014). (PMID: 10.1038/nrg364424535286)
      Chouteau, M. & Angers, B. The role of predators in maintaining the geographic organization of aposematic signals. Am. Nat. 178, 810–817 (2011). (PMID: 10.1086/66266722089874)
      Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. 113, 2164–2169 (2016). (PMID: 10.1073/pnas.1519216113268584164776528)
      Jiggins, C. D. & Lamas, G. The Ecology and Evolution of Heliconius butterflies (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780199566570.001.0001 . (PMID: 10.1093/acprof:oso/9780199566570.001.0001)
      Merrill, R. M. et al. Genetic dissection of assortative mating behavior. PLoS Biol. 17, e2005902 (2019). (PMID: 10.1371/journal.pbio.2005902307308736366751)
      Calabrese, G. M. & Pfennig, K. S. Reinforcement and the proliferation of species. J. Hered. 111, 138–146 (2019). (PMID: 10.1093/jhered/esz073)
      Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013). (PMID: 10.1111/j.1420-9101.2012.02599.x23323997)
      Coughlan, J. M. & Matute, D. R. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190533 (2020). (PMID: 10.1098/rstb.2019.0533)
      Rundle, H. D. & Nosil, P. Ecological speciation: Ecological speciation. Ecol. Lett. 8, 336–352 (2005). (PMID: 10.1111/j.1461-0248.2004.00715.x)
      Brown, J. L. et al. A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa 3083, 1 (2011). (PMID: 10.11646/zootaxa.3083.1.1)
      Lorioux-Chevalier, U., Tuanama Valles, M., Gallusser, S., Mori Pezo, R. & Chouteau, M. Unexpected colour pattern variation in mimetic frogs: Implication for the diversification of warning signals in the genus Ranitomeya. R. Soc. Open Sci. 10, 230354 (2023). (PMID: 10.1098/rsos.2303543729336510245201)
      Muell, M. et al. Phylogenomic analysis of evolutionary relationships in Ranitomeya poison frogs (Family Dendrobatidae) using ultraconserved elements. Mol. Phylogenet. Evol. 168, 107389 (2022). (PMID: 10.1016/j.ympev.2022.10738935026428)
      Twomey, E., Vestergaard, J. S. & Summers, K. Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator. Nat. Commun. 5, 4749 (2014). (PMID: 10.1038/ncomms574925158807)
      Brown, J., Evan, T., Pepper, M. & Rodriguez, M. Revision of the Ranitomeya fantastica species complex with description of two new species from central Peru (Anura: Dendrobatidae). Zootaxa 1823, 1–24 (2008). (PMID: 10.11646/zootaxa.1823.1.1)
      Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23(11), 1654–1663 (2020). (PMID: 10.1111/ele.1359732881319)
      Hoskin, C. J., Higgie, M., McDonald, K. R. & Moritz, C. Reinforcement drives rapid allopatric speciation. Nature 437, 1353–1356 (2005). (PMID: 10.1038/nature0400416251964)
      Meuche, I., Brusa, O., Linsenmair, K. E., Keller, A. & Pröhl, H. Only distance matters – non-choosy females in a poison frog population. Front. Zool. 10, 29 (2013). (PMID: 10.1186/1742-9994-10-29236883713665588)
      Dougherty, L. R. & Shuker, D. M. The effect of experimental design on the measurement of mate choice: A meta-analysis. Behav. Ecol. 26, 311–319 (2015). (PMID: 10.1093/beheco/aru125)
      Dufresnes, C. & Crochet, P.-A. Sex chromosomes as supergenes of speciation: Why amphibians defy the rules?. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210202 (2022). (PMID: 10.1098/rstb.2021.0202)
      Malone, J. H. & Michalak, P. Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri. BMC Evol. Biol. 8, 82 (2008). (PMID: 10.1186/1471-2148-8-82183316352330042)
      Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. Genes 12, 483 (2021). (PMID: 10.3390/genes12040483338105248067296)
      Lukhtanov, V. A., Dincă, V., Friberg, M., Vila, R. & Wiklund, C. Incomplete sterility of chromosomal hybrids: Implications for karyotype evolution and homoploid hybrid speciation. Front. Genet. 11, 583827 (2020). (PMID: 10.3389/fgene.2020.583827331937157594530)
      Sweigart, A. L., Fishman, L. & Willis, J. H. A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics 172, 2465–2479 (2006). (PMID: 10.1534/genetics.105.053686164153571456371)
      Chang, A. S. & Noor, M. A. F. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group. Evol. Int. J. Org. Evol. 64, 253–260 (2010). (PMID: 10.1111/j.1558-5646.2009.00823.x)
      Kubo, T., Yoshimura, A. & Kurata, N. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics 189, 1083–1092 (2011). (PMID: 10.1534/genetics.111.132035218686033213363)
      Turner, L. M., White, M. A., Tautz, D. & Payseur, B. A. Genomic networks of hybrid sterility. PLOS Genet. 10, e1004162 (2014). (PMID: 10.1371/journal.pgen.1004162245861943930512)
      Luo, D. et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45, 573–577 (2013). (PMID: 10.1038/ng.257023502780)
      Blair, W. F. Evolution in the Genus Bufo (University of Texas Press, 1972).
      Chouteau, M. & Angers, B. Wright’s shifting balance theory and the diversification of aposematic signals. PLoS ONE 7, e34028 (2012). (PMID: 10.1371/journal.pone.0034028224705093314693)
    • Grant Information:
      ANR-20-CE02-0003 Agence Nationale de la Recherche
    • Contributed Indexing:
      Keywords: Adaptive diversification; Hybrid sterility; Mate choice; Postzygotic isolation; Prezygotic isolation
    • الموضوع:
      Date Created: 20240827 Date Completed: 20240827 Latest Revision: 20240830
    • الموضوع:
      20240831
    • الرقم المعرف:
      PMC11349946
    • الرقم المعرف:
      10.1038/s41598-024-70744-5
    • الرقم المعرف:
      39191906