References: Faria, R. et al. Advances in ecological speciation: An integrative approach. Mol. Ecol. 23, 513–521 (2014). (PMID: 10.1111/mec.1261624354648)
Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003). (PMID: 10.1038/nature0127412529641)
Mayr, E. & Mayr, E. Systematics and the Origin of Species (Columbia University Press, 1942).
Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140 (2011). (PMID: 10.1111/j.1365-294X.2011.05350.x22066935)
Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007). (PMID: 10.1111/j.1365-2435.2006.01228.x)
Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020). (PMID: 10.1038/s41586-020-2845-0331163087759464)
Merot, C., Salazar, C., Merrill, R. M., Jiggins, C. D. & Joron, M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. (2017).
Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014). (PMID: 10.1038/nrg364424535286)
Chouteau, M. & Angers, B. The role of predators in maintaining the geographic organization of aposematic signals. Am. Nat. 178, 810–817 (2011). (PMID: 10.1086/66266722089874)
Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. 113, 2164–2169 (2016). (PMID: 10.1073/pnas.1519216113268584164776528)
Jiggins, C. D. & Lamas, G. The Ecology and Evolution of Heliconius butterflies (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780199566570.001.0001 . (PMID: 10.1093/acprof:oso/9780199566570.001.0001)
Merrill, R. M. et al. Genetic dissection of assortative mating behavior. PLoS Biol. 17, e2005902 (2019). (PMID: 10.1371/journal.pbio.2005902307308736366751)
Calabrese, G. M. & Pfennig, K. S. Reinforcement and the proliferation of species. J. Hered. 111, 138–146 (2019). (PMID: 10.1093/jhered/esz073)
Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013). (PMID: 10.1111/j.1420-9101.2012.02599.x23323997)
Coughlan, J. M. & Matute, D. R. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190533 (2020). (PMID: 10.1098/rstb.2019.0533)
Rundle, H. D. & Nosil, P. Ecological speciation: Ecological speciation. Ecol. Lett. 8, 336–352 (2005). (PMID: 10.1111/j.1461-0248.2004.00715.x)
Brown, J. L. et al. A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa 3083, 1 (2011). (PMID: 10.11646/zootaxa.3083.1.1)
Lorioux-Chevalier, U., Tuanama Valles, M., Gallusser, S., Mori Pezo, R. & Chouteau, M. Unexpected colour pattern variation in mimetic frogs: Implication for the diversification of warning signals in the genus Ranitomeya. R. Soc. Open Sci. 10, 230354 (2023). (PMID: 10.1098/rsos.2303543729336510245201)
Muell, M. et al. Phylogenomic analysis of evolutionary relationships in Ranitomeya poison frogs (Family Dendrobatidae) using ultraconserved elements. Mol. Phylogenet. Evol. 168, 107389 (2022). (PMID: 10.1016/j.ympev.2022.10738935026428)
Twomey, E., Vestergaard, J. S. & Summers, K. Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator. Nat. Commun. 5, 4749 (2014). (PMID: 10.1038/ncomms574925158807)
Brown, J., Evan, T., Pepper, M. & Rodriguez, M. Revision of the Ranitomeya fantastica species complex with description of two new species from central Peru (Anura: Dendrobatidae). Zootaxa 1823, 1–24 (2008). (PMID: 10.11646/zootaxa.1823.1.1)
Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23(11), 1654–1663 (2020). (PMID: 10.1111/ele.1359732881319)
Hoskin, C. J., Higgie, M., McDonald, K. R. & Moritz, C. Reinforcement drives rapid allopatric speciation. Nature 437, 1353–1356 (2005). (PMID: 10.1038/nature0400416251964)
Meuche, I., Brusa, O., Linsenmair, K. E., Keller, A. & Pröhl, H. Only distance matters – non-choosy females in a poison frog population. Front. Zool. 10, 29 (2013). (PMID: 10.1186/1742-9994-10-29236883713665588)
Dougherty, L. R. & Shuker, D. M. The effect of experimental design on the measurement of mate choice: A meta-analysis. Behav. Ecol. 26, 311–319 (2015). (PMID: 10.1093/beheco/aru125)
Dufresnes, C. & Crochet, P.-A. Sex chromosomes as supergenes of speciation: Why amphibians defy the rules?. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210202 (2022). (PMID: 10.1098/rstb.2021.0202)
Malone, J. H. & Michalak, P. Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri. BMC Evol. Biol. 8, 82 (2008). (PMID: 10.1186/1471-2148-8-82183316352330042)
Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. Genes 12, 483 (2021). (PMID: 10.3390/genes12040483338105248067296)
Lukhtanov, V. A., Dincă, V., Friberg, M., Vila, R. & Wiklund, C. Incomplete sterility of chromosomal hybrids: Implications for karyotype evolution and homoploid hybrid speciation. Front. Genet. 11, 583827 (2020). (PMID: 10.3389/fgene.2020.583827331937157594530)
Sweigart, A. L., Fishman, L. & Willis, J. H. A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics 172, 2465–2479 (2006). (PMID: 10.1534/genetics.105.053686164153571456371)
Chang, A. S. & Noor, M. A. F. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group. Evol. Int. J. Org. Evol. 64, 253–260 (2010). (PMID: 10.1111/j.1558-5646.2009.00823.x)
Kubo, T., Yoshimura, A. & Kurata, N. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics 189, 1083–1092 (2011). (PMID: 10.1534/genetics.111.132035218686033213363)
Turner, L. M., White, M. A., Tautz, D. & Payseur, B. A. Genomic networks of hybrid sterility. PLOS Genet. 10, e1004162 (2014). (PMID: 10.1371/journal.pgen.1004162245861943930512)
Luo, D. et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45, 573–577 (2013). (PMID: 10.1038/ng.257023502780)
Blair, W. F. Evolution in the Genus Bufo (University of Texas Press, 1972).
Chouteau, M. & Angers, B. Wright’s shifting balance theory and the diversification of aposematic signals. PLoS ONE 7, e34028 (2012). (PMID: 10.1371/journal.pone.0034028224705093314693)
No Comments.