Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Head-neck local ventilation mode for long-narrow mine working face.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • نبذة مختصرة :
      To improve the thermal health state of workers in mines facing heat hazards and enhance cooling capacity utilization efficiency of mine ventilation, this study proposes a suitable air distribution for mine workers' local cooling, taking into account the characteristics of long-narrow underground space and workers. The suggested air distribution involves harnessing underground cold air jets along with the mine's crossflow (mainstream ventilation) to create a localized safeguard airflow around the worker's head-neck, known as jet ventilation in crossflow (JVIC). The flow visualization experiment identified five flow patterns within a confined space. The study explores the impact of the velocity ratio (R) and confinement scale (C) on the evolution of JVIC flow patterns and presents a parametric description of the resulting flow field. Drawing on the microclimate control scope around mine workers' head-neck, the study defines the effective cooling zone and the ineffective cooling zone as the boundaries for controlling JVIC air distribution within confined mine spaces. This clarifies the applicability of the air distribution form and introduces an evaluation model for assessing the cooling effect and the efficiency of cooling capacity utilization to manage the non-uniform underground environment.
      (© 2024. The Author(s).)
    • References:
      Gibb, K., Beckman, S., Vergara, X. P., Heinzerling, A. & Harrison, R. Extreme heat and occupational health risks. Annu. Rev. Public Health 45, 315–335 (2024). (PMID: 3816650110.1146/annurev-publhealth-060222-034715)
      Su, Z., Jiang, Z. & Sun, Z. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index. Proced. Earth Planet. Sci. 1, 414–419 (2009). (PMID: 10.1016/j.proeps.2009.09.066)
      Alabyev, V., Kruk, M., Bazhina, T., Semenov, A. & Demin, V. Economic efficiency of the application of artificial air cooling for normalization of thermal conditions in oil mines. Sci. Iran. 27, 1606–1615 (2018).
      Feng, X.-P. et al. A full air cooling and heating system based on mine water source. Appl. Therm. Eng. 145, 610–617 (2018). (PMID: 10.1016/j.applthermaleng.2018.09.047)
      Kamyar, A., Aminossadati, S. M., Leonardi, C. & Sasmito, A. Current developments and challenges of underground mine ventilation and cooling methods. In Proceedings of the 16th Coal Operators' Conference, Mining Engineering, University of Wollongong. Oper. Conf. (eds Aziz, N. & Kininmonth, B.) 277-287 (2016).
      Zhang, H. Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments (University of California, 2003).
      Li, X. & Fu, H. Development of an efficient cooling strategy in the heading face of underground mines. Energies 13, 1116 (2020). (PMID: 10.3390/en13051116)
      Kissen, A. T., Summers, W. C., Buehring, W. J., Alexander, M. & Smedley, D. C. Head and neck cooling by air, water, or air plus water in hyperthermia. Aviat. space environ. med. 47, 265–271 (1976). (PMID: 1259671)
      Nunneley, S. A., Troutman, S. J. & Webb, P. Head cooling in work and heat stress. Aerosp. Med. 42, 64–68 (1971). (PMID: 5099867)
      Shvartz, E. Effect of a cooling hood on physiological responses to work in a hot environment. J. Appl. Physiol. 29, 36–39 (1970). (PMID: 542503310.1152/jappl.1970.29.1.36)
      Nunneley, S. A., Reader, D. C. & Maldonado, R. J. Head-temperature effects on physiology, comfort, and performance during hyperthermia. Aviat. space environ. med. 53, 623–628 (1982). (PMID: 7115249)
      Shvartz, E. Effect of neck versus chest cooling on responses to work in heat. J. Appl. Physiol. 40, 668–672 (1976). (PMID: 93189110.1152/jappl.1976.40.5.668)
      Karagozian, A. R. The jet in crossflow. Phys. Fluids 26, 10 (2014). (PMID: 10.1063/1.4895900)
      Shi, H. & Sasa, S. Study of turbulent flow of film cooling holes with lateral expanded exits. Chin. J. Aeronaut. 15, 200–207 (2002). (PMID: 10.1016/S1000-9361(11)60153-2)
      Xing, H. et al. Influence of surface curvature and jet-to-surface spacing on heat transfer of impingement cooled turbine leading edge with crossflow and dimple. Int. Commun. Heat Mass Transf. 135, 106116 (2022). (PMID: 10.1016/j.icheatmasstransfer.2022.106116)
      Li, Z. et al. Study of circular transverse jet—A new method for high-efficiency mixing and combustion in crossflow. Int. Commun. Heat Mass Transf 123, 105207 (2021). (PMID: 10.1016/j.icheatmasstransfer.2021.105207)
      Pathak, M., Dewan, A. & Dass, A. K. Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. Int. J. Heat Mass Transf. 49, 3914–3928 (2006). (PMID: 10.1016/j.ijheatmasstransfer.2006.05.001)
      Ben Meftah, M., De Serio, F., Malcangio, D., Mossa, M. & Petrillo, A. F. Experimental study of a vertical jet in a vegetated crossflow. J. Environ. Manag. 164, 19–31 (2015). (PMID: 10.1016/j.jenvman.2015.08.035)
      Saïd, N. M., Mhiri, H., Le Palec, G. & Bournot, P. Experimental and numerical analysis of pollutant dispersion from a chimney. Atmos. Environ. 39, 1727–1738 (2005).
      Feng, J., Baglietto, E., Tanimoto, K. & Kondo, Y. Demonstration of the STRUCT turbulence model for mesh consistent resolution of unsteady thermal mixing in a T-junction. Nucl. Eng. Des. 361, 110572 (2020). (PMID: 10.1016/j.nucengdes.2020.110572)
      Shams, A. et al. Synthesis of a CFD benchmarking exercise for a T-junction with wall. Nucl. Eng. Des. 330, 199–216 (2018). (PMID: 10.1016/j.nucengdes.2018.01.049)
      Wang, L. et al. Study on the thermal comfort characteristics under the vent with supplying air jets and cross-flows coupling in subway stations. Energy Build. 131, 113–122 (2016). (PMID: 10.1016/j.enbuild.2016.09.012)
      Li, J. et al. PIV experimental research on gasper jets interacting with the main ventilation in an aircraft cabin. Build. Environ. 138, 149–159 (2018). (PMID: 10.1016/j.buildenv.2018.04.023)
      Foust, J. & Rockwell, D. Structure of the jet from a generic catheter tip. Exp. Fluids. 41, 543–558 (2006). (PMID: 10.1007/s00348-006-0180-3)
      Plesniak, M. & Peterson, S. Wall Shear Stress Measurements for Conventional Applications and Biomedical Flows. In 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, OR, USA. 2301 (2004). https://doi.org/10.2514/6.2004-2301 .
      Gardner, J. E., Burgisser, A. & Stelling, P. Eruption and deposition of the fisher tuff (Alaska): Evidence for the evolution of pyroclastic flows. J. Geol. 115, 417–435 (2007). (PMID: 10.1086/518050)
      Delavan, S. & Webster, D. Unsteadiness of bivalve clam jet flow according to environmental conditions. Aquat. Biol. 13, 175–191 (2011). (PMID: 10.3354/ab00364)
      Arora, P. & Saha, A. K. Three-dimensional numerical study of flow and species transport in an elevated jet in crossflow. Int. J. Heat Mass Transfer 54, 92–105 (2011). (PMID: 10.1016/j.ijheatmasstransfer.2010.07.068)
      Singh, G., Sundararajan, T. & Bhaskaran, K. A. Mixing and entrainment characteristics of circular and noncircular confined jets. J. Fluids Eng. 125, 835–842 (2003). (PMID: 10.1115/1.1595676)
      Kelman, J. B., Greenhalgh, D. A. & Whiteman, M. Micro-jets in confined turbulent cross flow. Exp. Therm. Fluid Sci. 30, 297–305 (2006). (PMID: 10.1016/j.expthermflusci.2005.07.006)
      Maghrabie, H. M., Attalla, M., Fawaz, H. E. & Khalil, M. Numerical investigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow. Alex. Eng. J. 56, 285–296 (2017). (PMID: 10.1016/j.aej.2016.12.022)
      New, T. H., Lim, T. T. & Luo, S. C. Effects of jet velocity profiles on a round jet in cross-flow. Exp. Fluids 40, 859–875 (2006). (PMID: 10.1007/s00348-006-0124-y)
      Recker, E., Bosschaerts, W. & Hendrick, P. Large Eddy Simulation of Mixing in a Round Jet in Cross-Flow. In 39th AIAA Fluid Dynamics Conference (eds Recker, E. et al.) (American Institute of Aeronautics and Astronautics, 2009).
      Esmaeili, M., Afshari, A. & Jaberi, F. A. Turbulent mixing in non-isothermal jet in crossflow. Int. J. Heat Mass Transfer 89, 1239–1257 (2015). (PMID: 10.1016/j.ijheatmasstransfer.2015.05.055)
      Dayton, J. W., Poettgen, B. K. & Cetegen, B. M. Non-isothermal mixing characteristics in the extreme near-field of turbulent jets in hot crossflow: Effects of jet exit turbulence and velocity profile. Phys. Fluids 32, 115114 (2020). (PMID: 10.1063/5.0026860)
      Morton, B. R. & Ibbetson, A. Jets deflected in a crossflow. Exp. Therm. Fluid Sci 12, 112–133 (1996). (PMID: 10.1016/0894-1777(95)00097-6)
      Gopalan, S., Abraham, B. M. & Katz, J. The structure of a jet in cross flow at low velocity ratios. Phys. Fluids. 16, 2067–2087 (2004). (PMID: 10.1063/1.1697397)
      Mahesh, K. The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379–407 (2013). (PMID: 10.1146/annurev-fluid-120710-101115)
      Smith, S. H. & Mungal, M. G. Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83–122 (1998). (PMID: 10.1017/S0022112097007891)
      Chang, Y. R. & Chen, K. S. Measurement of opposing heated line jets discharged at an angle to a confined crossflow. Int. J. Heat Mass Transf. 37, 2935–2946 (1994). (PMID: 10.1016/0017-9310(94)90348-4)
      Chang, Y. R. & Chen, K. S. Prediction of opposing turbulent line jets discharged laterally into a confined crossflow. Int. J. Heat Mass Transf. 38, 1693–1703 (1995). (PMID: 10.1016/0017-9310(94)00277-3)
      Holdeman, J. D. Mixing of multiple jets with a confined subsonic crossflow. Prog. Energy Combust. Sci. 19, 31–70 (1993). (PMID: 10.1016/0360-1285(93)90021-6)
      Shi, L., Zhu, X. & Du, Z. Study on flow structure and heat transfer mechanism of inclined jet impinging on the rotating cylindrical target surface in the confined space. Int. J. Heat Mass Transf. 216, 124544 (2023). (PMID: 10.1016/j.ijheatmasstransfer.2023.124544)
      Wang, J. et al. Experimental study on flow characteristics of jet ventilation in crossflow in confined mine spaces. Sci. Rep. 14, 8022 (2024). (PMID: 385806591099761910.1038/s41598-024-58267-5)
      Ministry of Emergency Management of the People’s Republic of China. Coal Mine Safety Regulations. (Beijing, 2022).
      Zhao, D. Mine Cooling and Air Conditioning (China coal industry publishing house, 2018).
      Brown, G. A. & Williams, G. M. The effect of head cooling on deep body temperature and thermal comfort in man. Aviat. space environ. med. 53, 583–586 (1982). (PMID: 7115244)
      Fang, Z., Liu, H., Li, B., Tan, M. & Olaide, O. M. Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation. Energy Build. 158, 1286–1295 (2018). (PMID: 10.1016/j.enbuild.2017.10.099)
      Nie, X., Feng, S., Shudu, Z. & Quan, G. Simulation study on the dynamic ventilation control of single head roadway in high-altitude mine based on thermal comfort. Adv. Civ. Eng. 2019, 1–12 (2019).
      Qian, X., Lan, L. & Xiong, J. Effect of local cooling on thermal comfort of people in a sleeping posture. Proced. Eng. 205, 3277–3284 (2017). (PMID: 10.1016/j.proeng.2017.10.333)
      Zhang, H., Huizenga, C., Arens, E. A. & Yu, T. Modeling thermal comfort in stratified environments. UC Berkeley: Center for the Built Environment (2005). Retrieved from https://escholarship.org/uc/item/8q58k4hs .
      Shapiro, L. G. & Stockman, G. C. Computer Vision (Prentice-Hall, 2001).
      Igarashi, M., Tanaka, M., Kawashima, S. & Kamide, H. Experimental Study on Fluid Mixing for Evaluation of Thermal Striping in T-Pipe Junction. In 10th International Conference on Nuclear Engineering Vol. 3 (eds Igarashi, M. et al.) 383–390 (American Society of Mechanical Engineers Digital Collection, 2002). https://doi.org/10.1115/ICONE10-22255 . (PMID: 10.1115/ICONE10-22255)
      Ming, N., Zuojun, W., Chenyan, Z., Guangming, R. & Xiaohua, G. Analysis and application of relationship between Reynolds number index and Reynolds number ratio. J. Aerosp. Power 39, 20220397–20220410 (2024).
      Khouygani, M. G., Huang, R. F. & Hsu, C. M. Flow characteristics in median plane of a backward-inclined elevated transverse jet. Exp. Therm. Fluid Sci. 62, 164–174 (2015). (PMID: 10.1016/j.expthermflusci.2014.12.009)
      Kamide, H., Igarashi, M., Kawashima, S., Kimura, N. & Hayashi, K. Study on mixing behavior in a tee piping and numerical analyses for evaluation of thermal striping. Nucl. Eng. Des. 239, 58–67 (2009). (PMID: 10.1016/j.nucengdes.2008.09.005)
    • Grant Information:
      LJKMZ20220701 Scientific Research Fund of Liaoning Provincial Education Department; 52104195 National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Air distribution; Head-neck local cooling; Jet ventilation in crossflow (JVIC); Mine heat hazard; Non-uniform environment control
    • الموضوع:
      Date Created: 20240823 Latest Revision: 20240827
    • الموضوع:
      20240828
    • الرقم المعرف:
      PMC11343875
    • الرقم المعرف:
      10.1038/s41598-024-70739-2
    • الرقم المعرف:
      39179769