Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Tracking live-cell single-molecule dynamics enables measurements of heterochromatin-associated protein-protein interactions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 0411011 Publication Model: Print Cited Medium: Internet ISSN: 1362-4962 (Electronic) Linking ISSN: 03051048 NLM ISO Abbreviation: Nucleic Acids Res Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1992- : Oxford : Oxford University Press
      Original Publication: London, Information Retrieval ltd.
    • الموضوع:
    • نبذة مختصرة :
      Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored. Here, we extended live-cell single-molecule tracking studies in fission yeast to determine how HP1 proteins interact with their binding partners in the nucleus. We measured how genetic perturbations that affect H3K9me alter the diffusive properties of HP1 proteins and their binding partners, and we inferred their most likely interaction sites. Our results demonstrate that H3K9 methylation spatially restricts HP1 proteins and their interactors, thereby promoting ternary complex formation on chromatin while simultaneously suppressing off-chromatin binding. As opposed to being an inert platform to direct HP1 binding, our studies propose a novel function for H3K9me in promoting ternary complex formation by enhancing the specificity and stimulating the assembly of HP1-protein complexes in living cells.
      (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
    • Comments:
      Update of: bioRxiv. 2023 Oct 19:2023.03.08.531771. doi: 10.1101/2023.03.08.531771. (PMID: 36945633)
    • References:
      Yeast. 1998 Jul;14(10):943-51. (PMID: 9717240)
      Wellcome Open Res. 2020 Nov 24;5:274. (PMID: 33313420)
      Elife. 2020 Apr 27;9:. (PMID: 32338606)
      Nature. 2010 Aug 26;466(7310):1102-4. (PMID: 20703226)
      Mol Cell Biol. 2008 Dec;28(23):6973-88. (PMID: 18809570)
      Cold Spring Harb Symp Quant Biol. 2019;84:217-225. (PMID: 32493764)
      PLoS One. 2018 Aug 15;13(8):e0201101. (PMID: 30110338)
      Mol Cell Biol. 2003 Jun;23(12):4356-70. (PMID: 12773576)
      Front Bioinform. 2021;1:. (PMID: 35498544)
      Mol Cell. 2020 Jan 2;77(1):51-66.e8. (PMID: 31784357)
      Cell. 2007 Feb 23;128(4):707-19. (PMID: 17320508)
      Cell. 2007 Feb 23;128(4):693-705. (PMID: 17320507)
      Cell. 2007 Feb 9;128(3):491-504. (PMID: 17289569)
      Mol Cell Biol. 2001 Apr;21(7):2555-69. (PMID: 11259603)
      Sci Rep. 2015 Aug 04;5:12001. (PMID: 26238434)
      Science. 2004 Jun 25;304(5679):1971-6. (PMID: 15218150)
      Nature. 2001 Mar 1;410(6824):116-20. (PMID: 11242053)
      Elife. 2022 Sep 06;11:. (PMID: 36066004)
      Genetics. 2000 Jun;155(2):551-68. (PMID: 10835380)
      Yeast. 2004 Nov;21(15):1289-305. (PMID: 15546162)
      Trends Cell Biol. 2014 Jun;24(6):377-86. (PMID: 24618358)
      Nat Methods. 2013 May;10(5):421-6. (PMID: 23524394)
      Trends Biochem Sci. 2007 Sep;32(9):407-14. (PMID: 17764955)
      Mol Gen Genet. 2000 Nov;264(4):492-505. (PMID: 11129054)
      Genes Dev. 2019 May 1;33(9-10):565-577. (PMID: 30808655)
      Nat Rev Genet. 2016 Aug;17(8):487-500. (PMID: 27346641)
      J Mol Biol. 2017 Nov 24;429(23):3666-3677. (PMID: 28942089)
      Nat Struct Mol Biol. 2022 Sep;29(9):898-909. (PMID: 36064597)
      J Cell Sci. 1996 Nov;109 ( Pt 11):2637-48. (PMID: 8937982)
      EMBO J. 2001 Sep 17;20(18):5232-41. (PMID: 11566886)
      Elife. 2022 Aug 17;11:. (PMID: 35976226)
      Mol Cell. 2006 Jun 9;22(5):681-92. (PMID: 16762840)
      Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244. (PMID: 29235574)
      Nature. 2001 Mar 1;410(6824):120-4. (PMID: 11242054)
      Mol Biol Cell. 2004 Jun;15(6):2819-33. (PMID: 15064352)
      Methods. 2021 Sep;193:16-26. (PMID: 32247784)
      Sci Adv. 2022 Jul 8;8(27):eabk0793. (PMID: 35857444)
      Curr Biol. 2000 May 4;10(9):517-25. (PMID: 10801440)
      Nat Rev Microbiol. 2014 Jan;12(1):9-22. (PMID: 24336182)
      Mol Cell. 2008 Dec 26;32(6):778-90. (PMID: 19111658)
      Biophys J. 2019 Mar 19;116(6):975-982. (PMID: 30846363)
      Nat Methods. 2008 Feb;5(2):155-7. (PMID: 18193054)
      Nat Struct Mol Biol. 2023 Nov;30(11):1628-1639. (PMID: 37770717)
      Nat Genet. 1998 Jun;19(2):192-5. (PMID: 9620780)
      Nat Rev Genet. 2007 Jan;8(1):35-46. (PMID: 17173056)
      Science. 2004 Jan 30;303(5658):672-6. (PMID: 14704433)
      Elife. 2020 Mar 20;9:. (PMID: 32195666)
      Genes Dev. 2019 Jan 1;33(1-2):116-126. (PMID: 30573453)
      Science. 2015 Apr 3;348(6230):1258699. (PMID: 25831549)
      Science. 2003 Aug 8;301(5634):798-802. (PMID: 12907790)
      Science. 2002 Mar 15;295(5562):2080-3. (PMID: 11859155)
      Nat Struct Mol Biol. 2007 Nov;14(11):1025-1040. (PMID: 17984965)
      Mol Cell Biol. 2004 Apr;24(8):3157-67. (PMID: 15060140)
      Mol Cell. 2016 Apr 21;62(2):207-221. (PMID: 27105116)
      Cell Rep. 2023 Nov 28;42(11):113428. (PMID: 37952152)
      Nature. 2017 Jul 27;547(7664):463-467. (PMID: 28682306)
      Science. 2003 Jan 31;299(5607):721-5. (PMID: 12560555)
      Elife. 2018 Jan 04;7:. (PMID: 29300163)
      Nat Chem Biol. 2014 Jul;10(7):524-32. (PMID: 24937070)
    • Grant Information:
      RSG2211701DMC American Cancer Society; 2316281 Division of Emerging Frontiers; R35 GM137832 United States GM NIGMS NIH HHS; 140220 Division of Molecular and Cellular Biosciences; NSF; R35GM137832 United States GM NIGMS NIH HHS
    • Contributed Indexing:
      Local Abstract: [plain-language-summary] Visualizing molecular-scale interactions in living cells is challenging, but advances in single-molecule super-resolution microscopy enable high-resolution imaging of molecular positions of proteins and their motions within cells. HP1 proteins bind to H3K9 methylated histones to form complexes that silence gene expression. Here, we tracked single HP1 proteins and their binding partners to measure when and where they form complexes in live fission yeast cells. Genetic perturbations enabled us to connect their motions to specific changes in their cellular properties. Surprisingly, we noted that HP1 proteins preferentially form ternary complexes with their binding partners at sites of H3K9me. This work proposes a novel function for chromatin and shows how H3K9 methylation spatially restricts HP1-associated complex formation while suppressing off-chromatin binding.
    • الرقم المعرف:
      0 (Heterochromatin)
      0 (Schizosaccharomyces pombe Proteins)
      0 (Histones)
      0 (Chromosomal Proteins, Non-Histone)
      107283-02-3 (Chromobox Protein Homolog 5)
      0 (Chromatin)
    • الموضوع:
      Date Created: 20240814 Date Completed: 20241014 Latest Revision: 20241016
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC11472046
    • الرقم المعرف:
      10.1093/nar/gkae692
    • الرقم المعرف:
      39142658