Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

[Diagnosis of Rib Fracture Using Artificial Intelligence on Chest CT Images of Patients with Chest Trauma].

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Kaike L; Castro-Zunti R; Ko SB; Jin GY
  • المصدر:
    Journal of the Korean Society of Radiology [J Korean Soc Radiol] 2024 Jul; Vol. 85 (4), pp. 769-779. Date of Electronic Publication: 2024 Mar 05.
  • نوع النشر :
    English Abstract; Journal Article
  • اللغة:
    Korean
  • معلومة اضافية
    • Transliterated Title:
      외상 환자의 흉부 CT에서 인공지능을 이용한 갈비뼈 골절 진단.
    • المصدر:
      Publisher: Korean Society of Radiology Country of Publication: Korea (South) NLM ID: 9918452587406676 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2951-0805 (Electronic) Linking ISSN: 29510805 NLM ISO Abbreviation: J Korean Soc Radiol Subsets: PubMed not MEDLINE
    • بيانات النشر:
      Original Publication: Seoul : Korean Society of Radiology, [2021]-
    • نبذة مختصرة :
      Competing Interests: Conflicts of Interest: The authors have no potential conflicts of interest to disclose.
      Purpose: To determine the pros and cons of an artificial intelligence (AI) model developed to diagnose acute rib fractures in chest CT images of patients with chest trauma.
      Materials and Methods: A total of 1209 chest CT images (acute rib fracture [ n = 1159], normal [ n = 50]) were selected among patients with chest trauma. Among 1159 acute rib fracture CT images, 9 were randomly selected for AI model training. 150 acute rib fracture CT images and 50 normal ones were tested, and the remaining 1000 acute rib fracture CT images was internally verified. We investigated the diagnostic accuracy and errors of AI model for the presence and location of acute rib fractures.
      Results: Sensitivity, specificity, positive and negative predictive values, and accuracy for diagnosing acute rib fractures in chest CT images were 93.3%, 94%, 97.9%, 82.5%, and 95.6% respectively. However, the accuracy of the location of acute rib fractures was low at 76% (760/1000). The cause of error in the diagnosis of acute rib fracture seemed to be a result of considering the scapula or clavicle that were in the same position (66%) or some ribs that were not recognized (34%).
      Conclusion: The AI model for diagnosing acute rib fractures showed high accuracy in detecting the presence of acute rib fractures, but diagnosis of the exact location of rib fractures was limited.
      (Copyrights © 2024 The Korean Society of Radiology.)
    • References:
      J Am Geriatr Soc. 2004 May;52(5):805-8. (PMID: 15086666)
      Eur Radiol. 2015 Jul;25(7):1865-74. (PMID: 25680714)
      Br J Radiol. 2012 Oct;85(1018):e845-50. (PMID: 22514102)
      Trauma Surg Acute Care Open. 2020 Jun 10;5(1):e000441. (PMID: 32550267)
      Korean J Radiol. 2020 Jul;21(7):891-899. (PMID: 32524789)
      Comput Med Imaging Graph. 2021 Jul;91:101937. (PMID: 34087611)
      EBioMedicine. 2020 Dec;62:103106. (PMID: 33186809)
      Radiographics. 2017 Mar-Apr;37(2):628-651. (PMID: 28186860)
      Eur J Radiol. 2022 Sep;154:110434. (PMID: 35797792)
      Acta Orthop. 2017 Dec;88(6):581-586. (PMID: 28681679)
      Eur J Gen Pract. 2019 Jul;25(3):128-135. (PMID: 31257959)
      J Am Coll Radiol. 2015 Jul;12(7):683-8. (PMID: 26003588)
      Sci Rep. 2021 Dec 6;11(1):23513. (PMID: 34873241)
      Korean J Radiol. 2020 Jul;21(7):869-879. (PMID: 32524787)
      Eur Radiol Exp. 2018 Oct 24;2(1):35. (PMID: 30353365)
      Acad Radiol. 2017 Feb;24(2):153-159. (PMID: 27876272)
      Lancet Digit Health. 2020 Sep;2(9):e486-e488. (PMID: 33328116)
      Radiol Artif Intell. 2021 Jul 21;3(5):e200248. (PMID: 34617026)
      JAMA. 2019 May 14;321(18):1836. (PMID: 31087024)
    • الموضوع:
      Date Created: 20240812 Latest Revision: 20240813
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC11310438
    • الرقم المعرف:
      10.3348/jksr.2023.0099
    • الرقم المعرف:
      39130793