Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Impact of additives on syntrophic propionate and acetate enrichments under high-ammonia conditions.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- المصدر:
Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
- بيانات النشر:
Original Publication: Berlin ; New York : Springer International, c1984-
- الموضوع:
- نبذة مختصرة :
High ammonia concentrations in anaerobic degradation systems cause volatile fatty acid accumulation and reduced methane yield, which often derive from restricted activity of syntrophic acid-oxidising bacteria and hydrogenotrophic methanogens. Inclusion of additives that facilitate the electron transfer or increase cell proximity of syntrophic species by flocculation can be a suitable strategy to counteract these problems, but its actual impact on syntrophic interactions has yet to be determined. In this study, microbial cultivation and molecular and microscopic analysis were performed to evaluate the impact of conductive (graphene, iron oxide) and non-conductive (zeolite) additives on the degradation rate of acetate and propionate to methane by highly enriched ammonia-tolerant syntrophic cultures derived from a biogas process. All additives had a low impact on the lag phase but resulted in a higher rate of acetate (except graphene) and propionate degradation. The syntrophic bacteria 'Candidatus Syntrophopropionicum ammoniitolerans', Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen were found in higher relative abundance and higher gene copy numbers in flocculating communities than in planktonic communities in the cultures, indicating benefits to syntrophs of living in close proximity to their cooperating partner. Microscopy and element analysis showed precipitation of phosphates and biofilm formation in all batches except on the graphene batches, possibly enhancing the rate of acetate and propionate degradation. Overall, the concordance of responses observed in both acetate- and propionate-fed cultures highlight the suitability of the addition of iron oxide or zeolites to enhance acid conversion to methane in high-ammonia biogas processes. KEY POINTS: • All additives promoted acetate (except graphene) and propionate degradation. • A preference for floc formation by ammonia-tolerant syntrophs was revealed. • Microbes colonised the surfaces of iron oxide and zeolite, but not graphene.
(© 2024. The Author(s).)
- References:
Microorganisms. 2020 Feb 20;8(2):. (PMID: 32093251)
Appl Microbiol Biotechnol. 2013 Oct;97(20):9193-205. (PMID: 23233207)
Biotechnol Biofuels. 2016 Feb 27;9:48. (PMID: 26925165)
Front Microbiol. 2018 Nov 30;9:2921. (PMID: 30555446)
Environ Microbiol Rep. 2011 Aug;3(4):500-5. (PMID: 23761313)
N Biotechnol. 2020 May 25;56:9-15. (PMID: 31706043)
Environ Microbiol. 2015 Mar;17(3):648-55. (PMID: 24725505)
Environ Sci Technol. 2019 May 7;53(9):5512-5520. (PMID: 30990997)
Biotechnol Bioeng. 2005 Mar 20;89(6):670-9. (PMID: 15696537)
Water Sci Technol. 2008;57(5):735-40. (PMID: 18401146)
Mol Microbiol. 1998 Apr;28(2):217-26. (PMID: 9622348)
FEMS Microbiol Rev. 2022 Mar 3;46(2):. (PMID: 34875063)
ACS Nano. 2010 Oct 26;4(10):5731-6. (PMID: 20925398)
Environ Microbiol. 2018 Dec;20(12):4503-4511. (PMID: 30126076)
Water Res. 2022 Sep 1;223:118976. (PMID: 36001903)
Bioresour Technol. 2018 Jul;260:157-168. (PMID: 29625288)
Syst Appl Microbiol. 2011 Jun;34(4):260-6. (PMID: 21498020)
J Bacteriol. 1992 Sep;174(17):5489-95. (PMID: 1512186)
Appl Environ Microbiol. 2014 Aug;80(15):4599-605. (PMID: 24837373)
Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1245-1256. (PMID: 11491320)
Bioresour Technol. 2001 Oct;80(1):37-43. (PMID: 11554599)
Microb Biotechnol. 2009 Sep;2(5):575-84. (PMID: 21255290)
FEMS Microbiol Ecol. 2015 Nov;91(11):. (PMID: 26490748)
Microb Biotechnol. 2018 Jul;11(4):710-720. (PMID: 29896929)
Mikrobiologiia. 2009 Jul-Aug;78(4):496-505. (PMID: 19827715)
Front Microbiol. 2024 Jun 05;15:1389257. (PMID: 38933034)
Appl Environ Microbiol. 2005 Dec;71(12):7838-45. (PMID: 16332758)
Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63. (PMID: 16849424)
PLoS One. 2013 Apr 22;8(4):e61217. (PMID: 23630581)
Appl Environ Microbiol. 2000 May;66(5):2248-51. (PMID: 10788411)
ISME J. 2016 Mar;10(3):621-31. (PMID: 26545286)
Environ Sci Process Impacts. 2016 Aug 10;18(8):968-80. (PMID: 27349520)
Appl Microbiol Biotechnol. 2012 Mar;93(6):2529-41. (PMID: 22005741)
Int J Syst Bacteriol. 1999 Apr;49 Pt 2:545-56. (PMID: 10319475)
Ann N Y Acad Sci. 2008 Mar;1125:230-41. (PMID: 18378595)
Water Res. 2018 Dec 1;146:275-287. (PMID: 30278382)
Waste Manag. 2018 Jun;76:394-403. (PMID: 29606531)
Appl Environ Microbiol. 2000 Aug;66(8):3608-15. (PMID: 10919827)
Chemosphere. 2021 Jan;262:127932. (PMID: 32805662)
Microb Biotechnol. 2018 Jul;11(4):680-693. (PMID: 29239113)
Appl Environ Microbiol. 2014 Aug;80(16):5116-23. (PMID: 24928874)
Appl Environ Microbiol. 2017 Mar 2;83(6):. (PMID: 28087527)
Appl Environ Microbiol. 1998 Jun;64(6):2232-6. (PMID: 9603840)
Adv Microb Physiol. 1995;37:83-133. (PMID: 8540424)
Appl Environ Microbiol. 1988 Jan;54(1):10-19. (PMID: 16347517)
Bioresour Technol. 2005 Mar;96(4):459-64. (PMID: 15491827)
Water Res. 2019 Nov 1;164:114925. (PMID: 31382155)
Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):157-164. (PMID: 11837298)
Water Sci Technol. 2005;52(1-2):331-6. (PMID: 16180446)
Int J Syst Evol Microbiol. 2003 Jul;53(Pt 4):971-975. (PMID: 12892113)
Environ Microbiol. 2021 Mar;23(3):1620-1637. (PMID: 33400377)
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Sep-Oct;6(5):452-74. (PMID: 24957946)
J Biotechnol. 2015 May 10;201:43-53. (PMID: 25455016)
Nature. 2005 Jun 23;435(7045):1098-101. (PMID: 15973408)
ISME J. 2023 Nov;17(11):1966-1978. (PMID: 37679429)
Stand Genomic Sci. 2016 Oct 12;11:80. (PMID: 27777650)
Appl Environ Microbiol. 2014 Nov;80(22):6908-18. (PMID: 25172866)
FEMS Microbiol Lett. 2010 Aug 1;309(1):100-4. (PMID: 20546311)
ISME J. 2016 Oct;10(10):2405-18. (PMID: 27128991)
Int J Syst Evol Microbiol. 2016 Mar;66(3):1506-1509. (PMID: 26791251)
Int J Syst Evol Microbiol. 2002 Sep;52(Pt 5):1729-1735. (PMID: 12361280)
Front Microbiol. 2019 Sep 06;10:2064. (PMID: 31555248)
Bioresour Technol. 2018 Nov;268:28-35. (PMID: 30064035)
Biotechnol Biofuels. 2015 Sep 22;8:154. (PMID: 26396592)
Water Res. 2017 Jan 1;108:212-221. (PMID: 27817893)
Bioresour Technol. 2013 Sep;143:632-41. (PMID: 23835276)
Bioresour Technol. 2020 May;304:122981. (PMID: 32088624)
Environ Sci Technol. 2018 Jun 19;52(12):7160-7169. (PMID: 29782790)
Appl Environ Microbiol. 2013 Jul;79(14):4515-6. (PMID: 23787899)
Appl Environ Microbiol. 1988 Jan;54(1):20-29. (PMID: 16347526)
Environ Sci Technol. 2014 Jul 1;48(13):7536-43. (PMID: 24901501)
- Grant Information:
948138 H2020 European Research Council; 2019-03846 Vetenskapsrådet
- Contributed Indexing:
Keywords: Biogas; Graphene; Iron oxide; Syntrophy; Zeolite
- الرقم المعرف:
0 (Propionates)
7664-41-7 (Ammonia)
0 (Acetates)
OP0UW79H66 (Methane)
1318-02-1 (Zeolites)
0 (Ferric Compounds)
7782-42-5 (Graphite)
1K09F3G675 (ferric oxide)
0 (Biofuels)
- الموضوع:
Date Created: 20240807 Date Completed: 20240807 Latest Revision: 20240810
- الموضوع:
20250114
- الرقم المعرف:
PMC11306274
- الرقم المعرف:
10.1007/s00253-024-13263-7
- الرقم المعرف:
39110235
No Comments.