Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Oligodendrocytes produce amyloid-β and contribute to plaque formation alongside neurons in Alzheimer's disease model mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 9809671 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1726 (Electronic) Linking ISSN: 10976256 NLM ISO Abbreviation: Nat Neurosci Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2002->: New York, NY : Nature Publishing Group
      Original Publication: New York, NY : Nature America Inc., c1998-
    • الموضوع:
    • نبذة مختصرة :
      Amyloid-β (Aβ) is thought to be neuronally derived in Alzheimer's disease (AD). However, transcripts of amyloid precursor protein (APP) and amyloidogenic enzymes are equally abundant in oligodendrocytes (OLs). By cell-type-specific deletion of Bace1 in a humanized knock-in AD model, APP NLGF , we demonstrate that OLs and neurons contribute to Aβ plaque burden. For rapid plaque seeding, excitatory projection neurons must provide a threshold level of Aβ. Ultimately, our findings are relevant for AD prevention and therapeutic strategies.
      (© 2024. The Author(s).)
    • References:
      Zhao, J. et al. β-secretase processing of the β-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J. Biol. Chem. 271, 31407–31411 (1996). (PMID: 894015010.1074/jbc.271.49.31407)
      Veeraraghavalu, K., Zhang, C., Zhang, X., Tanzi, R. E. & Sisodia, S. S. Age-dependent, non-cell-autonomous deposition of amyloid from synthesis of β-amyloid by cells other than excitatory neurons. J. Neurosci. 34, 3668–3673 (2014). (PMID: 24599465394258210.1523/JNEUROSCI.5079-13.2014)
      Rice, H. C. et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol. Neurodegener. 15, 3 (2020). (PMID: 31915042695089810.1186/s13024-019-0356-y)
      Skaper, S. D., Evans, N. A., Rosin, C., Facci, L. & Richardson, J. C. Oligodendrocytes are a novel source of amyloid peptide generation. Neurochem. Res. 34, 2243–2250 (2009). (PMID: 1955751410.1007/s11064-009-0022-9)
      Walter, S. et al. The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease. Acta Neuropathol. 137, 239–257 (2019). (PMID: 3042620310.1007/s00401-018-1929-5)
      Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453.e23 (2023). (PMID: 3777468110.1016/j.cell.2023.08.005)
      Chen, J. F. et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109, 2292–2307 (2021). (PMID: 34102111829829110.1016/j.neuron.2021.05.012)
      Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019). (PMID: 31042697686582210.1038/s41586-019-1195-2)
      Depp, C. et al. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 618, 349–357 (2023). (PMID: 372586781024738010.1038/s41586-023-06120-6)
      Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019). (PMID: 3155160110.1038/s41593-019-0491-3)
      Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018). (PMID: 30096314608693410.1016/j.cell.2018.06.021)
      Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020). (PMID: 31932797698079310.1038/s41591-019-0695-9)
      Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019). (PMID: 30747918654454610.1038/s41586-019-0903-2)
      Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018). (PMID: 2922746910.1038/nbt.4038)
      Tognatta, R. et al. Transient Cnp expression by early progenitors causes Cre-Lox-based reporter lines to map profoundly different fates. Glia 65, 342–359 (2017). (PMID: 2780789610.1002/glia.23095)
      Jo, Y. R. et al. Potential neuron-autonomous Purkinje cell degeneration by 2′,3′-cyclic nucleotide 3′-phosphodiesterase promoter/Cre-mediated autophagy impairments. FASEB J. 35, e21225 (2021). (PMID: 3333756810.1096/fj.202001366RR)
      Lam, M. et al. CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes. Nat. Commun. 13, 5583 (2022). (PMID: 36151203950810310.1038/s41467-022-33200-4)
      Hu, X., Hu, J., Dai, L., Trapp, B. & Yan, R. Axonal and Schwann cell BACE1 is equally required for remyelination of peripheral nerves. J. Neurosci. 35, 3806–3814 (2015). (PMID: 25740511434818310.1523/JNEUROSCI.5207-14.2015)
      Blackwell, J. M., Lesicko, A. M., Rao, W., De Biasi, M. & Geffen, M. N. Auditory cortex shapes sound responses in the inferior colliculus. eLife 9, e51890 (2020). (PMID: 32003747706246410.7554/eLife.51890)
      Lee, C. C., Nayak, A., Sethuraman, A., Belfort, G. & McRae, G. J. A three-stage kinetic model of amyloid fibrillation. Biophys. J. 92, 3448–3458 (2007). (PMID: 17325005185313810.1529/biophysj.106.098608)
      Burgold, S., Filser, S., Dorostkar, M. M., Schmidt, B. & Herms, J. In vivo imaging reveals sigmoidal growth kinetic of β-amyloid plaques. Acta Neuropathol. Commun. 2, 30 (2014). (PMID: 24678659405098410.1186/2051-5960-2-30)
      Herculano-Houzel, S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62, 1377–1391 (2014). (PMID: 2480702310.1002/glia.22683)
      Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003). (PMID: 1267042210.1016/S0896-6273(03)00124-7)
      Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016). (PMID: 2758222010.1038/nature19323)
      Tucker, S. et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis. 43, 575–588 (2015). (PMID: 2509661510.3233/JAD-140741)
      Chatila, Z. K. et al. BACE1 regulates proliferation and neuronal differentiation of newborn cells in the adult hippocampus in mice. eNeuro 5, ENEURO.0067-18.2018 (2018).
      Sur, C. et al. BACE inhibition causes rapid, regional and non-progressive volume reduction in Alzheimer’s disease brain. Brain 143, 3816–3826 (2020). (PMID: 33253354845329010.1093/brain/awaa332)
      Wessels, A. M. et al. Cognitive outcomes in trials of two BACE inhibitors in Alzheimer’s disease. Alzheimers Dement. 16, 1483–1492 (2020). (PMID: 3304911410.1002/alz.12164)
      Satir, T. M. et al. Partial reduction of amyloid β production by β-secretase inhibitors does not decrease synaptic transmission. Alzheimers Res. Ther. 12, 63 (2020). (PMID: 32456694725168910.1186/s13195-020-00635-0)
      Peters, F. et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol. 135, 695–710 (2018). (PMID: 29327084590422810.1007/s00401-017-1804-9)
      Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
      Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019). (PMID: 3106926110.12688/wellcomeopenres.15191.1)
      Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
      Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014). (PMID: 2472826910.1038/nn.3697)
      Hu, X., Das, B., Hou, H., He, W. & Yan, R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J. Exp. Med. 215, 927–940 (2018). (PMID: 29444819583976610.1084/jem.20171831)
      Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003). (PMID: 1259025810.1038/ng1095)
      Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006). (PMID: 1714678010.1002/dvg.20256)
      Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010). (PMID: 2002365310.1038/nn.2467)
      Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006). (PMID: 17021169667461810.1523/JNEUROSCI.1202-06.2006)
      Weil, M. T. et al. Isolation and culture of oligodendrocytes. Methods Mol. Biol. 1936, 79–95 (2019). (PMID: 3082089410.1007/978-1-4939-9072-6_5)
      Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 2274377210.1038/nmeth.2019)
      Wirths, O. Extraction of soluble and insoluble protein fractions from mouse brains and spinal cords. Bio Protoc. 7, e2422 (2017). (PMID: 345411508413590)
      Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014). (PMID: 24695228510206410.1038/nature13186)
    • الرقم المعرف:
      0 (Amyloid beta-Peptides)
      0 (Amyloid beta-Protein Precursor)
      EC 3.4.- (Amyloid Precursor Protein Secretases)
      EC 3.4.23.- (Aspartic Acid Endopeptidases)
      EC 3.4.23.46 (Bace1 protein, mouse)
    • الموضوع:
      Date Created: 20240805 Date Completed: 20240904 Latest Revision: 20240912
    • الموضوع:
      20240912
    • الرقم المعرف:
      PMC11374705
    • الرقم المعرف:
      10.1038/s41593-024-01730-3
    • الرقم المعرف:
      39103558