Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Isolation, genome analysis and tissue localization of Ceratobasidium theobromae, a new encounter pathogen of cassava in Southeast Asia.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Gil-Ordóñez A;Gil-Ordóñez A;Gil-Ordóñez A; Pardo JM; Pardo JM; Sheat S; Sheat S; Xaiyavong K; Xaiyavong K; Leiva AM; Leiva AM; Arinaitwe W; Arinaitwe W; Winter S; Winter S; Newby J; Newby J; Cuellar WJ; Cuellar WJ
- المصدر:
Scientific reports [Sci Rep] 2024 Aug 05; Vol. 14 (1), pp. 18139. Date of Electronic Publication: 2024 Aug 05.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع:
- نبذة مختصرة : In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.
(© 2024. The Author(s).) - References: Newby, J., Smith, D., Cramb, R., Delaquis, E. & Yadav, L. Cassava value chains and livelihoods in Southeast Asia, a regional research symposium held at Pematang Siqantar, North Sumatra, Indonesia, 1–5 July 2019. In ACIAR Proceedings Series No 148 (eds. Newby, J. et al.) 114 (Australian Centre for International Agricultural Research, 2020).
Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification 87–97 (Food and Agriculture Organization of the United Nations, 2013).
Malik, A. I. et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed. Sci. 70(2), 145–166 (2020). (PMID: 32523397727224510.1270/jsbbs.18180)
Graziosi, I. et al. Emerging pests and diseases of South-east Asian cassava: A comprehensive evaluation of geographic priorities, management options and research needs. Pest Manag. Sci. 72(6), 1071–1089 (2016). (PMID: 2685319410.1002/ps.4250)
Siriwan, W. et al. Surveillance and diagnostics of the emergent Sri Lankan cassava mosaic virus (Fam. Geminiviridae) in Southeast Asia. Virus Res. 285, 197959 (2020). (PMID: 3240787010.1016/j.virusres.2020.197959)
Pardo, J. M. et al. Cassava witches’ broom disease in Southeast Asia: A review of its distribution and associated symptoms. Plants 12(11), 2217 (2023). (PMID: 372991961025586010.3390/plants12112217)
Dolores, L. M. et al. Incidence, distribution, and genetic diversity of ‘Candidatus Phytoplasma luffae’-related strain (16SrVIII) associated with the cassava witches’ broom (CWB) disease in the Philippines. Crop Prot. 169, 106244 (2023). (PMID: 10.1016/j.cropro.2023.106244)
Keane, P. J., Flentje, N. T. & Lamb, K. P. Investigation of vascular-streak dieback of cocoa in Papua New Guinea. Aust. J. Biol. Sci. 25(3), 553–564 (1972). (PMID: 10.1071/BI9720553)
Leiva, A. M. et al. Ceratobasidium sp. is associated with cassava witches broom disease, a re-emergent threat to cassava cultivation in Southeast Asia. Sci. Rep. 13, 22500 (2023). (PMID: 381105431072818010.1038/s41598-023-49735-5)
Manawasinghe, I. S. et al. Defining a species in fungal plant pathology: Beyond the species level. Fungal Divers. 109(1), 267–282 (2021). (PMID: 10.1007/s13225-021-00481-x)
Samuels, G. J. et al. Vascular streak dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy. Fungal Biol. 116(1), 11–23 (2012). (PMID: 2220859810.1016/j.funbio.2011.07.009)
Lam, C. H., Varghese, G. & Zainal Abidin, M. A. Z. In vitro production of Oncobasidium theobromae basidiospores. Trans. Br. Mycol. Soc. 90(3), 505–507 (1988). (PMID: 10.1016/S0007-1536(88)80168-2)
Uchida, J. Y., Aragaki, M. & Yahata, P. S. Basidiospore formation by Ceratobasidium sp. on agar. Mycology 78(4), 587–592 (1986). (PMID: 10.1080/00275514.1986.12025293)
Holderness, M. Control of vascular-streak dieback of cocoa with triazole fungicides and the problem of phytotoxicity. Plant Pathol. 39(2), 286–293 (1990). (PMID: 10.1111/j.1365-3059.1990.tb02505.x)
Talbot, P. H. B. & Keane, P. J. Oncobasidium: A new genus of tulasnelloid fungi. Aust. J. Bot. 19, 203–206 (1971). (PMID: 10.1071/BT9710203)
Samuels, G. J. & Ismaiel, A. Trichoderma evansii and T. lieckfeldtiae: Two new T. hamatum-like species. Mycology 101(1), 142–156 (2009). (PMID: 10.3852/08-161)
Gonzalez, D. et al. Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol. 120(4), 603–619 (2016). (PMID: 27020160501383410.1016/j.funbio.2016.01.012)
Ali, S. S. et al. Draft genome sequence of fastidious pathogen Ceratobasidium theobromae, which causes vascular-streak dieback in Theobroma cacao. Fungal Biol. Biotechnol. 6, 1–10 (2019). (PMID: 10.1186/s40694-019-0077-6)
Junaid, M. & Guest, D. Modified culture assay to obtain a diversity of hyphal structures of Ceratobasidium theobromae-VSD pathogen on cocoa. Biodivers. J. Biol. Div. 22(4), 1 (2021).
Pecchia, S. et al. Molecular detection of the seed-borne pathogen Colletotrichum lupini targeting the hyper-variable IGS region of the ribosomal cluster. Plants 8(7), 222 (2019). (PMID: 31337095668125710.3390/plants8070222)
Rapicavoli, J., Ingel, B., Blanco-Ulate, B., Cantu, D. & Roper, C. Xylella fastidiosa: An examination of a re-emerging plant pathogen. Mol. Plant Pathol. 19(4), 786–800 (2018). (PMID: 2874223410.1111/mpp.12585)
Morse, S. S. Plagues and politics. In Infectious Disease and International Policy (ed. Price-Smith, A. T.) (Palgrave Macmillan, 2001).
Thines, M. An evolutionary framework for host shifts-jumping ships for survival. New Phytol. 224, 605–617 (2019). (PMID: 3138116610.1111/nph.16092)
Guest, D. & Keane, P. Vascular-streak dieback: A new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology 97(12), 1654–1657 (2007). (PMID: 1894372910.1094/PHYTO-97-12-1654)
Freestone, M. W. et al. Continental-scale distribution and diversity of Ceratobasidium orchid mycorrhizal fungi in Australia. Ann. Bot. 128(3), 329–343 (2021). (PMID: 34077492838947410.1093/aob/mcab067)
Kobayashi, T. et al. Mushroom yield of cultivated shiitake (Lentinula edodes) and fungal communities in logs. J. For. Res. 25(4), 269–275 (2020). (PMID: 10.1080/13416979.2020.1759886)
Lu, D. S. et al. Reticulate evolution and rapid development of reproductive barriers upon secondary contact pose challenges for species delineation in a forest fungus. BioRxiv 1, 1 (2023).
Sangpueak, R., Phansak, P. & Buensanteai, N. Morphological and molecular identification of Colletotrichum species associated with cassava anthracnose in Thailand. J. Phytopathol. 166(2), 129–142 (2018). (PMID: 10.1111/jph.12669)
Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015). (PMID: 2592384410.1146/annurev-arplant-043014-114623)
Sperschneider, J. & Dodds, P. N. EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol. Plant-Microb. Interact. 35(2), 146–156 (2022). (PMID: 10.1094/MPMI-08-21-0201-R)
De La Fuente, L., Merfa, M. V., Cobine, P. A. & Coleman, J. J. Pathogen adaptation to the xylem environment. Annu. Rev. Phytopathol. 60, 161–186 (2022).
Sheat, S., Margaria, P. & Winter, S. Differential tropism in roots and shoots of resistant and susceptible cassava (Manihot esculenta Crantz) infected by Cassava brown streak viruses. Cells 10(5), 1221 (2021). (PMID: 34067728815638710.3390/cells10051221)
Yadeta, K. & Thomma, B. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4(97), 43568 (2013).
Keane, P. J. & Prior, C. Vascular-Streak Dieback of Cocoa. Phytopathological Papers No. 33 (Commonwealth Mycological Institute, 1991).
Bryceson, S. R., Morgan, J. W., McMahon, P. J. & Keane, P. J. A sudden and widespread change in symptoms and incidence of vascular streak dieback of cocoa (Theobroma cacao) linked to environmental change in Sulawesi, Indonesia. Agric. Ecosyst. Environ. 350, 108466 (2023). (PMID: 10.1016/j.agee.2023.108466)
Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21(10), 640–656 (2023). (PMID: 3713107010.1038/s41579-023-00900-7)
Landicho, D. & Reyes, J. Plant Quarantine Policy Formulation and Implementation for Cassava Witches’ Broom (CWB) Disease Control in Bukidnon, Philippines (University of the Philippines Los Banos, 2019).
Varghese, G., Abidin, Z. & Mainstone, B. J. Vascular streak dieback of cocoa in Malaysia. II. Isolation and culture techniques of causal pathogen. Planter 57, 667 (1981).
Leonian, L. H. A study of factors promoting pycnidium-formation in some Sphaeropsidales. Am. J. Bot. 11(1), 19–50 (1924).
Brown, J., Pirrung, M. & McCue, L. A. FQC dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33(19), 3137–3139 (2017). (PMID: 28605449587077810.1093/bioinformatics/btx373)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13(6), e1005595 (2017). (PMID: 28594827548114710.1371/journal.pcbi.1005595)
Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab, 2014).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12(1), 59–60 (2015). (PMID: 2540200710.1038/nmeth.3176)
Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094–3100 (2018). (PMID: 29750242613799610.1093/bioinformatics/bty191)
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
García-Alcalde, F. et al. Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics 28(20), 2678–2679 (2012). (PMID: 2291421810.1093/bioinformatics/bts503)
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 3210–3212 (2015). (PMID: 2605971710.1093/bioinformatics/btv351)
Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 32, 309–312 (2004). (PMID: 10.1093/nar/gkh379)
Sun, J. et al. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 51(1), 397–403 (2023). (PMID: 10.1093/nar/gkad313)
Ondov, B. D. et al. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 17(1), 1–14 (2016). (PMID: 10.1186/s13059-016-0997-x)
Gostinčar, C. Towards genomic criteria for delineating fungal species. J. Fungi 6(4), 246 (2020). (PMID: 10.3390/jof6040246)
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and BlastKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428(4), 726–731 (2016). (PMID: 2658540610.1016/j.jmb.2015.11.006)
Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30(9), 1236–1240 (2014). (PMID: 24451626399814210.1093/bioinformatics/btu031)
Meinken, J. et al. FunSecKB2: A fungal protein subcellular location knowledgebase. Comput. Mol. Biol. 4, 4 (2014).
Almagro-Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37(4), 420–423 (2019). (PMID: 3077823310.1038/s41587-019-0036-z)
Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001). (PMID: 1115261310.1006/jmbi.2000.4315)
Armenteros, J. J. A. et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2, 5 (2019).
Gattiker, A., Gasteiger, E. & Bairoch, A. ScanProsite: A reference implementation of a PROSITE scanning tool. Appl. Bioinform. 1(2), 107–108 (2002).
Gíslason, M. H., Nielsen, H., Armenteros, J. J. A. & Johansen, A. R. Prediction of GPI-anchored proteins with pointer neural networks. Curr. Res. Biotechnol. 3, 6–13 (2021). (PMID: 10.1016/j.crbiot.2021.01.001)
Jimenez, J., Leiva, A. M., Olaya, C., Acosta-Trujillo, D. & Cuellar, W. J. An optimized nucleic acid isolation protocol for virus diagnostics in cassava (Manihot esculenta Crantz.). MethodsX 8, 101496 (2021). (PMID: 34754767856346310.1016/j.mex.2021.101496)
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Munganyinka, E. et al. Localization of cassava brown streak virus in Nicotiana rustica and cassava Manihot esculenta (Crantz) using RNAscope® in situ hybridization. Virol. J. 15, 1–11 (2018). (PMID: 10.1186/s12985-018-1038-z) - Contributed Indexing: Keywords: Ceratobasidium; Manihot esculenta; Theobroma cacao; Cassava witches’ broom disease; Fastidious fungus; Re-emerging disease; Vascular streak dieback; Xylem
- الموضوع: Date Created: 20240805 Date Completed: 20240805 Latest Revision: 20240812
- الموضوع: 20240813
- الرقم المعرف: PMC11300614
- الرقم المعرف: 10.1038/s41598-024-69061-8
- الرقم المعرف: 39103398
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.