Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Addressing overlapping sample challenges in genome-wide association studies: Meta-reductive approach.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Rajabli F;Rajabli F;Rajabli F; Emekci A; Emekci A
- المصدر:
PloS one [PLoS One] 2024 Aug 01; Vol. 19 (8), pp. e0296207. Date of Electronic Publication: 2024 Aug 01 (Print Publication: 2024).
- نوع النشر :
Journal Article
- اللغة:
English
- معلومة اضافية
- المصدر:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- بيانات النشر:
Original Publication: San Francisco, CA : Public Library of Science
- الموضوع:
- نبذة مختصرة :
Polygenic risk scores (PRS) are instrumental in genetics, offering insights into an individual level genetic risk to a range of diseases based on accumulated genetic variations. These scores rely on Genome-Wide Association Studies (GWAS). However, precision in PRS is often challenged by the requirement of extensive sample sizes and the potential for overlapping datasets that can inflate PRS calculations. In this study, we present a novel methodology, Meta-Reductive Approach (MRA), that was derived algebraically to adjust GWAS results, aiming to neutralize the influence of select cohorts. Our approach recalibrates summary statistics using algebraic derivations. Validating our technique with datasets from Alzheimer disease studies, we showed that the summary statistics of the MRA and those derived from individual-level data yielded the exact same values. This innovative method offers a promising avenue for enhancing the accuracy of PRS, especially when derived from meta-analyzed GWAS data.
Competing Interests: The author declares no competing interests.
(Copyright: © 2024 Rajabli, Emekci. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Comments:
Update of: bioRxiv. 2023 Dec 11:2023.12.08.570867. doi: 10.1101/2023.12.08.570867. (PMID: 38168201)
- References:
Nat Genet. 2022 Apr;54(4):412-436. (PMID: 35379992)
J Alzheimers Dis. 2020;74(4):1271-1283. (PMID: 32250305)
medRxiv. 2023 Jul 08;:. (PMID: 37461624)
Am J Hum Genet. 2011 May 13;88(5):586-98. (PMID: 21565292)
Int J Mol Sci. 2020 Mar 02;21(5):. (PMID: 32131491)
Bioinformatics. 2010 Sep 1;26(17):2190-1. (PMID: 20616382)
Nat Genet. 2019 Mar;51(3):414-430. (PMID: 30820047)
Alzheimers Dement. 2019 Oct;15(10):1333-1347. (PMID: 31473137)
Gigascience. 2022 Dec 28;12:. (PMID: 37326441)
JAMA Netw Open. 2020 Jul 1;3(7):e208501. (PMID: 32609350)
JAMA Neurol. 2021 Jan 1;78(1):102-113. (PMID: 33074286)
Nat Protoc. 2020 Sep;15(9):2759-2772. (PMID: 32709988)
- Grant Information:
R01 AG070864 United States AG NIA NIH HHS
- الموضوع:
Date Created: 20240801 Date Completed: 20240801 Latest Revision: 20240806
- الموضوع:
20240806
- الرقم المعرف:
PMC11293628
- الرقم المعرف:
10.1371/journal.pone.0296207
- الرقم المعرف:
39088468
No Comments.