Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

guidedNOMe-seq quantifies chromatin states at single allele resolution for hundreds of custom regions in parallel.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2000-
    • الموضوع:
    • نبذة مختصرة :
      Since the introduction of next generation sequencing technologies, the field of epigenomics has evolved rapidly. However, most commonly used assays are enrichment-based methods and thus only semi-quantitative. Nucleosome occupancy and methylome sequencing (NOMe-seq) allows for quantitative inference of chromatin states with single locus resolution, but this requires high sequencing depth and is therefore prohibitively expensive to routinely apply to organisms with large genomes. To overcome this limitation, we introduce guidedNOMe-seq, where we combine NOMe profiling with large scale sgRNA synthesis and Cas9-mediated region-of-interest (ROI) liberation. To facilitate quantitative comparisons between multiple samples, we additionally develop an R package to standardize differential analysis of any type of NOMe-seq data. We extensively benchmark guidedNOMe-seq in a proof-of-concept study, dissecting the interplay of ChAHP and CTCF on chromatin. In summary we present a cost-effective, scalable, and customizable target enrichment extension to the existing NOMe-seq protocol allowing genome-scale quantification of nucleosome occupancy and transcription factor binding at single allele resolution.
      (© 2024. The Author(s).)
    • References:
      Trends Genet. 2021 Sep;37(9):798-806. (PMID: 33892959)
      Microbiology (Reading). 2009 Mar;155(Pt 3):733-740. (PMID: 19246744)
      Nat Rev Genet. 2023 Jan;24(1):21-43. (PMID: 35840754)
      Elife. 2017 Jun 27;6:. (PMID: 28653622)
      Nat Protoc. 2016 Jan;11(1):118-33. (PMID: 26678082)
      Nat Rev Genet. 2019 Apr;20(4):207-220. (PMID: 30675018)
      Nucleic Acids Res. 2019 Nov 18;47(20):10580-10596. (PMID: 31584093)
      Genome Res. 2023 May;33(5):787-797. (PMID: 37127332)
      Genome Biol. 2023 Mar 16;24(1):50. (PMID: 36927507)
      PLoS One. 2014 Oct 30;9(10):e111756. (PMID: 25357200)
      Nature. 2016 Feb 4;530(7588):113-6. (PMID: 26814966)
      Nat Rev Clin Oncol. 2020 Feb;17(2):75-90. (PMID: 31548600)
      Genome Biol. 2016 Mar 04;17:41. (PMID: 26944702)
      Sci Rep. 2017 Jan 24;7:41328. (PMID: 28117430)
      Nat Biotechnol. 2020 Apr;38(4):433-438. (PMID: 32042167)
      Genome Res. 2012 Dec;22(12):2497-506. (PMID: 22960375)
      Cell. 2017 Oct 5;171(2):305-320.e24. (PMID: 28985562)
      BMC Res Notes. 2008 Jul 28;1:54. (PMID: 18710507)
      Nature. 2019 May;569(7754):136-140. (PMID: 30996347)
      Genes Cells. 2006 Jul;11(7):805-14. (PMID: 16824199)
      Nat Struct Mol Biol. 2014 Jan;21(1):73-81. (PMID: 24317492)
      Nat Rev Mol Cell Biol. 2019 Oct;20(10):590-607. (PMID: 31399642)
      Mol Cell. 2017 Aug 3;67(3):411-422.e4. (PMID: 28735898)
      Mol Cell. 2023 Mar 2;83(5):787-802.e9. (PMID: 36758546)
      Nature. 2018 May;557(7707):739-743. (PMID: 29795351)
      Mol Cell. 2021 Jan 21;81(2):255-267.e6. (PMID: 33290745)
      Signal Transduct Target Ther. 2023 Jan 16;8(1):36. (PMID: 36646687)
      Mol Cell. 2018 Jul 5;71(1):56-72.e4. (PMID: 30008319)
      Gigascience. 2021 Feb 16;10(2):. (PMID: 33590861)
      Nature. 2020 Jul;583(7818):699-710. (PMID: 32728249)
      Genome Res. 2019 Aug;29(8):1329-1342. (PMID: 31201211)
      Nature. 2021 Aug;596(7870):133-137. (PMID: 34234345)
      Nature. 2019 Jul;571(7766):489-499. (PMID: 31341302)
      Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14497-502. (PMID: 21844352)
      Nat Chem Biol. 2018 May;14(5):431-441. (PMID: 29581585)
      Genome Biol. 2004;5(10):R80. (PMID: 15461798)
      Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
      Nucleic Acids Res. 2019 May 7;47(8):e47. (PMID: 30783653)
      Nat Methods. 2020 Dec;17(12):1191-1199. (PMID: 33230324)
      Genome Biol. 2008;9(9):R137. (PMID: 18798982)
      Cell. 2016 Dec 15;167(7):1897. (PMID: 27984737)
      Nucleic Acids Res. 2019 Dec 2;47(21):11181-11196. (PMID: 31665434)
      Nat Commun. 2018 Feb 22;9(1):781. (PMID: 29472610)
      Cell. 2019 Sep 5;178(6):1437-1451.e14. (PMID: 31491387)
      Nat Methods. 2009 Dec;6(12):917-22. (PMID: 19915560)
      Nat Genet. 2022 Oct;54(10):1504-1513. (PMID: 36195755)
      Nat Genet. 2014 Apr;46(4):380-4. (PMID: 24531329)
      Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34. (PMID: 25199790)
      Genome Res. 2017 Mar;27(3):491-499. (PMID: 28100584)
      PLoS One. 2014 Sep 23;9(9):e108424. (PMID: 25247697)
      Science. 2007 Jun 8;316(5830):1497-502. (PMID: 17540862)
      Genome Biol. 2022 May 24;23(1):119. (PMID: 35606795)
      Cell. 2007 Mar 23;128(6):1231-45. (PMID: 17382889)
      Front Cell Dev Biol. 2021 Jul 22;9:714687. (PMID: 34368164)
      BMC Biotechnol. 2022 Nov 4;22(1):33. (PMID: 36333700)
      Nat Rev Genet. 2022 Dec;23(12):728-740. (PMID: 35831531)
      Nat Commun. 2022 Nov 02;13(1):6568. (PMID: 36323688)
      Nucleic Acids Res. 2022 Nov 11;50(20):11563-11579. (PMID: 36354002)
      Nat Genet. 2021 Mar;53(3):269-278. (PMID: 33558760)
    • Contributed Indexing:
      Keywords: CTCF; Cas9 enrichment; ChAHP; Chromatin; NOMe-Seq
    • الرقم المعرف:
      0 (Chromatin)
      0 (Nucleosomes)
    • الموضوع:
      Date Created: 20240729 Date Completed: 20240729 Latest Revision: 20240801
    • الموضوع:
      20240801
    • الرقم المعرف:
      PMC11288131
    • الرقم المعرف:
      10.1186/s12864-024-10625-3
    • الرقم المعرف:
      39075377