Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Seasonal variability in the feeding ecology of an oceanic predator.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Lovell MS;Lovell MS; Polito MJ; Polito MJ; Schuster JA; Schuster JA; Shallow EE; Shallow EE; Janosik AM; Janosik AM; Falterman BJ; Falterman BJ; Dance MA; Dance MA
- المصدر:
Scientific reports [Sci Rep] 2024 Jul 29; Vol. 14 (1), pp. 17353. Date of Electronic Publication: 2024 Jul 29.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع:
- نبذة مختصرة : Complementary approaches (stomach contents, DNA barcoding, and stable isotopes) were used to examine seasonal shifts in the feeding ecology of an oceanic predator, yellowfin tuna (Thunnus albacares, n = 577), in the northern Gulf of Mexico. DNA barcoding greatly enhanced dietary resolution and seasonally distinct prey assemblages were observed for both sub-adults and adults. In general, diet was characterized by ommastrephid squids and exocoetids in spring, juvenile fishes (i.e., carangids and scombrids) in summer, migratory coastal fishes during fall, and an increased consumption of planktonic prey (e.g., amphipods) in winter. Seasonal variability in bulk stable isotope values (δ 13 C, δ 15 N, and δ 34 S) was also observed, with low δ 15 N values and high δ 34 S values during late summer/early fall and high δ 15 N values (low δ 34 S) during late winter/early spring. Bayesian stable isotope mixing models corroborated seasonal diet shifts, highlighting the importance of oceanic nekton in spring/summer, coastal nekton during fall, and oceanic plankton during winter. Seasonal shifts in diet appeared to be influenced by prey reproductive cycles, habitat associations, and environmental conditions. Findings highlight the complex food web dynamics supporting an opportunistic oceanic predator and the importance of seasonal cycles in prey availability to predator resource utilization in open-ocean ecosystems.
(© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.) - References: Rooker, J. R. et al. Population connectivity of pelagic megafauna in the Cuba-Mexico-United States triangle. Sci. Rep. 9, 1663 (2019). (PMID: 30733508636733010.1038/s41598-018-38144-8)
Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. Trophic cascades in a formerly cod-dominated ecosystem. Science 308, 1621–1623 (2005). (PMID: 1594718610.1126/science.1113075)
Baum, J. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009). (PMID: 1929861610.1111/j.1365-2656.2009.01531.x)
Drymon, J. M. et al. Documentation of Atlantic tarpon (Megalops atlanticus) space use and move persistence in the northern Gulf of Mexico facilitated by angler advocates. Conserv. Sci. Pract. 3(2), e331 (2020). (PMID: 10.1111/csp2.331)
Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210 (2008). (PMID: 1830842110.1016/j.tree.2008.01.003)
Dale, J. J. et al. Global habitat loss of a highly migratory predator, the blue marlin (Makaira nigricans). Divers. Distrib. 28, 2020–2034 (2022). (PMID: 10.1111/ddi.13606)
Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016). (PMID: 2697955010.1016/j.tree.2016.02.015)
Poland, S. J., Scharf, F. S. & Staudinger, M. D. Foraging ecology of large pelagic fishes in the US South Atlantic: Structured piscivory shapes trophic niche variation. Mar. Eco. Prog. Ser. 631, 181–199 (2019). (PMID: 10.3354/meps13126)
Schmidt, N. M. et al. Response of an arctic predator guild to collapsing lemming cycles. Proc. R. Soc. Lon. Ser. B 279, 4417–4422 (2012).
Ménard, F., Labrune, C., Shin, Y.-J., Asine, A.-S. & Bard, F. Opportunistic predation in tuna: A size-based approach. Mar. Ecol. Prog. Ser. 323, 223–231 (2006). (PMID: 10.3354/meps323223)
Davidson, Z. et al. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna. PLoS ONE 8, e55182 (2013). (PMID: 23405121356621010.1371/journal.pone.0055182)
Latham, A. D. M., Latham, M. C., Knopff, K. H., Hebblewhite, M. & Boutin, S. Wolves, white-tailed deer, and beaver: Implications of seasonal prey switching for woodland caribou declines. Ecography 36, 1276–1290 (2013). (PMID: 10.1111/j.1600-0587.2013.00035.x)
Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears in the boreal forest of southcentral Sweden. Wildl. Biol. 22(3), 107–116 (2016). (PMID: 10.2981/wlb.00194)
Costalago, D., Navarro, J., Álvarez-Calleja, I. & Palomera, I. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460, 169–181 (2012). (PMID: 10.3354/meps09751)
Block, B. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011). (PMID: 2169783110.1038/nature10082)
Clarke, A., Griffiths, H. J., Linse, K., Barnes, D. K. A. & Crame, J. A. How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers. Distrib. 13, 620–632 (2007). (PMID: 10.1111/j.1472-4642.2007.00380.x)
Acuña-Marrero, D. et al. Residency and movement patterns of an apex predatory shark (Galeocerdo cuvier) at the Galapagos Marine Reserve. PLoS ONE 12(8), e0183669 (2017). (PMID: 28829820556764010.1371/journal.pone.0183669)
Schaefer, K. M., Fuller, D. W. & Block, B. A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering. Fish Res. 112, 22–37 (2011). (PMID: 10.1016/j.fishres.2011.08.006)
Hoolihan, J. P. et al. Vertical and Horizontal Movements of Yellowfin Tuna in the Gulf of Mexico. Mar. Coast. Fish. 6(1), 211–222 (2014). (PMID: 10.1080/19425120.2014.935900)
Schaefer, K. M., Fuller, D. W. & Aldana, G. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in waters surrounding the Revillagigedo Islands Archipelago Biosphere Reserve, Mexico. Fish Oceanogr. 23, 65–82 (2014). (PMID: 10.1111/fog.12047)
Hamilton, P., Fargion, G. S. & Biggs, D. C. Loop current eddy paths in the western Gulf of Mexico. J. Phys. Oceanogr. 29, 1180–1207 (1999). (PMID: 10.1175/1520-0485(1999)029<1180:LCEPIT>2.0.CO;2)
Rooker, J. R. et al. Spatial, temporal, and habitat related variation in abundance of pelagic fishes in the Gulf of Mexico: Potential implications of the Deepwater Horizon oil spill. PLoS ONE 8(10), e76080 (2013). (PMID: 24130759379494010.1371/journal.pone.0076080)
Cornic, M., Smith, B. L., Kitchens, L. L., Bremer, J. R. A. & Rooker, J. R. Abundance and habitat associations of tuna larvae in the surface water of the Gulf of Mexico. Hydrobiologia 806, 29–46 (2018). (PMID: 10.1007/s10750-017-3330-0)
Le-Alvarado, M. et al. Yellowfin tuna (Thunnus albacares) foraging habitat and trophic position in the Gulf of Mexico based on intrinsic isotope tracers. PLoS ONE 16(2), e0246082 (2021). (PMID: 33626056790420010.1371/journal.pone.0246082)
Graham, B. S., Grubbs, D., Holland, K. & Popp, B. N. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar. Biol. 150, 647–658 (2007). (PMID: 10.1007/s00227-006-0360-y)
Pecoraro, C. et al. Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish Biol. Fish. 27, 811–841 (2017). (PMID: 10.1007/s11160-016-9460-z)
Cranswick, D. & Regg, J. Deepwater in the Gulf of Mexico: America's New Frontier. OCS Report MMS 97–0004. (U.S. Department of the Interior, Minerals Management. Service, Gulf of Mexico OCS Regional Office, 1997).
Zacharia, P. & Abdurahiman, K. Methods of stomach content analysis of fishes. Winter School on Towards Ecosystem Based Management of Marine Fisheries—Building Mass Balance Trophic and Simulation Models 1, 148–158 (2004).
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond. B 360, 1847–1857 (2005). (PMID: 10.1098/rstb.2005.1716)
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2)
Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10(1), e0116182 (2015). (PMID: 25635686432132510.1371/journal.pone.0116182)
Pacicco, A. E. et al. Age and growth of Yellowfin Tuna in the US Gulf of Mexico and western Atlantic. Mar. Coast. Fish. 13, 345–361 (2021). (PMID: 10.1002/mcf2.10158)
Pacicco, A. E. et al. Reproductive biology of yellowfin tuna (Thunnus albacares) in the northcentral US Gulf of Mexico. Fish. Res. 261, 106620 (2023). (PMID: 10.1016/j.fishres.2023.106620)
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/ .
Oksanen, J. et al. Package ‘Vegan’. Community Ecology Package, Version 2. (2013). https://github.com/vegandevs/vegan .
Arbizu, P. M. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020). https://github.com/pmartinezarbizu/pairwiseAdonis .
Lorrain, A. et al. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Res. II 113, 188–198 (2015). (PMID: 10.1016/j.dsr2.2014.02.003)
Fry, B. & Chumchal, M. Μ. Sulfur stable isotope indicators of residency in estuarine fish. Limnol. Oceanogr. 56, 1563–1576 (2011). (PMID: 10.4319/lo.2011.56.5.1563)
Szpak, P. & Buckley, M. Sulfur isotopes (δ 34 S) in Arctic marine mammals: Indicators of benthic vs pelagic foraging?. Mar. Ecol. Prog. Ser. 653, 205–216 (2020). (PMID: 10.3354/meps13493)
Varela, J., Larrañaga, A. & Medina, A. Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J. Exp. Mar. Biol. Ecol. 406, 21–28 (2011). (PMID: 10.1016/j.jembe.2011.06.010)
Ménard, F., Lorrain, A., Potier, M. & Marsac, F. Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar. Biol. 153, 141–152 (2007). (PMID: 10.1007/s00227-007-0789-7)
Yanagisawa, F. & Sakai, H. Thermal decomposition of barium sulfate-vanadium-pentoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal. Chem. 55, 985–987 (1983). (PMID: 10.1021/ac00257a046)
Dance, M. A. & Lovell, M. S. lipid correction for carbon stable isotope analysis of yellowfin tuna. Fishes 8(9), 446 (2023). (PMID: 10.3390/fishes8090446)
Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007). (PMID: 1722515710.1007/s00442-006-0630-x)
Logan, J. M. et al. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77, 838–846 (2008). (PMID: 1848957010.1111/j.1365-2656.2008.01394.x)
Pomerleau, C., Winkler, G., Sastri, A., Nelson, R. J. & Williams, W. J. The effect of acidification and the combined effects of acidification/lipid extraction on carbon stable isotope ratios for sub-arctic and arctic marine zooplankton studies. Pol. Biol. 37, 1541–1548 (2014). (PMID: 10.1007/s00300-014-1540-8)
D’Ambra, I., Graham, W. M., Carmichael, R. H. & Hernandez, F. J. Jr. Dietary overlap between jellyfish and forage fish in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 587, 31–40 (2018). (PMID: 10.3354/meps12419)
Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ. 7, e6876 (2019). (PMID: 31179172654235010.7717/peerj.6876)
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011). (PMID: 10.1111/j.1467-9868.2010.00749.x)
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Taylor and Francis, 2017). (PMID: 10.1201/9781315370279)
Dance, M. A. & Rooker, J. R. Cross-shelf habitat shifts by red snapper (Lutjanus campechanus) in the Gulf of Mexico. PLoS ONE 14(3), e0213506 (2019). (PMID: 30870449641778710.1371/journal.pone.0213506)
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018). (PMID: 29942712601575310.7717/peerj.5096)
Lerner, J. E. et al. Evaluating the use of stable isotope analysis to infer the feeding ecology of a growing US gray seal (Halichoerus grypus) population. PLoS ONE 13(2), e192241 (2018). (PMID: 10.1371/journal.pone.0192241)
Madigan, D. J. et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific Bluefin Tuna (Thunnus orientalis). PLoS ONE 7(11), e49220 (2012). (PMID: 23145128349227610.1371/journal.pone.0049220)
Graham, B. S. Trophic dynamics and movements of tuna in the tropical pacific ocean inferred from stable isotope analyses. Ph.D. Thesis. University of Hawaii (2007).
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017). (PMID: 10.1007/s11222-016-9696-4)
Phillips, D. L. & Koch, P. L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125 (2002). (PMID: 2854701610.1007/s004420100786)
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn. (Chapman & Hall/CRC, 2004).
Kells, V. & Carpenter, K. A Field Guide to Coastal Fishes: from Maine to Texas (The Johns Hopkins University Press, 2011). (PMID: 10.56021/9780801898389)
Perry, H. & Larsen, K. A Picture Guide to Shelf Invertebrates from the Northern Gulf of Mexico (Academic Press, 2004).
Young, C. M., Sewell, M. A. & Rice, M. E. Atlas of Marine Invertebrate Larvae (Academic Press, 2002).
Rudershausen, P. J. et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and Wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans. Am. Fish. Soc. 139, 1335–1359 (2010). (PMID: 10.1577/T09-105.1)
Olson, R. et al. Chapter four-bioenergetics, trophic ecology, and niche separation of tunas. Adv. Mar. Biol. 74, 199–344 (2016). (PMID: 2757305210.1016/bs.amb.2016.06.002)
Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep Sea Res. Part II 140, 55–73 (2017). (PMID: 10.1016/j.dsr2.2017.03.003)
Zudaire, I. et al. Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Mar. Biol. 162, 2363–2377 (2015). (PMID: 10.1007/s00227-015-2763-0)
da Silva, G. B., Hazin, H. G., Hazin, F. H. V. & Vaske, T. Jr. Diet composition of bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) caught on aggregated schools in the western equatorial Atlantic Ocean. J. Appl. Ichthyol. 35, 1111–1118 (2019). (PMID: 10.1111/jai.13949)
Hernandez, F. J. et al. The across-shelf larval, postlarval, and juvenile fish assemblages collected at offshore oil and gas platforms of the Mississippi River Delta. Am. Fish. Soc. Symp. 36, 39–72 (2003).
Fujii, T. Potential influence of offshore oil and gas platforms on the feeding ecology of fish assemblages in the North Sea. Mar. Eco. Prog. Ser. 542, 167–186 (2016). (PMID: 10.3354/meps11534)
Bertrand, A., Bard, F. X. & Josse, E. Tuna food habits related to the micronekton distribution in French Polynesia. Mar. Biol. 140, 1023–1037 (2002). (PMID: 10.1007/s00227-001-0776-3)
Allain, V. et al. Interaction between coastal and oceanic ecosystems of the Western and central Pacific Ocean through predator prey relationship studies. PLoS ONE 7(5), e36701 (2012). (PMID: 22615796335292510.1371/journal.pone.0036701)
Keenan, S. F. The importance of zooplankton in the diets of blue runner (Caranx crysos) near offshore petroleum platforms in the northern Gulf of Mexico. M.S. Thesis, Louisiana State University (2002).
Potier, M. et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish. Res. 83, 60–72 (2007). (PMID: 10.1016/j.fishres.2006.08.020)
Weng, J. S. et al. Feeding ecology of juvenile yellowfin tuna from waters southwest of Taiwan inferred from stomach contents and stable isotope analysis. Mar. Coast. Fish. 7, 537–548 (2015). (PMID: 10.1080/19425120.2015.1094157)
Tarnecki, J. H. & Patterson, W. F. Changes in Red Snapper diet and trophic ecology following the Deepwater Horizon oil spill. Mar. Coast. Fish. 7, 135–147 (2015). (PMID: 10.1080/19425120.2015.1020402)
Shimose, T. & Wells, R. J. D. Feeding Ecology of Bluefin Tunas. In Biology and Ecology of Bluefin Tuna (eds Kitagawa, T. & Kimura, S.) 78–97 (CRC Press, 2015).
Price, M. E., Randall, M. T., Sulak, K. J., Edwards, R. E. & Lamont, M. M. Temporal and spatial relationships of yellowfin tuna to deepwater petroleum platforms in the Northern Gulf of Mexico. Mar. Coast. Fish. 14, e10213 (2022). (PMID: 10.1002/mcf2.10213)
Genovart, M. et al. The young, the weak and the sick: Evidence of natural selection by predation. PLoS ONE 5, e9774 (2010). (PMID: 20333305284164410.1371/journal.pone.0009774)
Lowerre-Barbieri, S. K., Ganias, K., Saborido-Rey, F., Murua, H. & Hunter, J. R. Reproductive timing in marine fishes: Variability, temporal scales, and methods. Mar. Coast. Fish. 3, 71–91 (2011). (PMID: 10.1080/19425120.2011.556932)
Stanley, D. R. & Wilson, C. A. Seasonal and spatial variation in the abundance and size distribution of fishes associated with a petroleum platform in the northern Gulf of Mexico. Can. J. Fish. Aquat. Sci. 54, 1166–1176 (1997).
Ditty, J. G. & Shaw, R. F. Spatial and temporal distribution of larval striped mullet (Mugil cephalus) and white mullet (M. curema, Family: Mugilidae) in the northern Gulf of Mexico, with notes on mountain mullet Agonostomus monticola. Bull. Mar. Sci. 59, 271–288 (1996).
Brown-Peterson, N. J., Leaf, R. T., Schueller, A. M. & Andres, M. J. Reproductive dynamics of gulf menhaden (Brevoortia patronus) in the northern Gulf of Mexico: Effects on stock assessments. Fish. Bull. 115, 284–299 (2017). (PMID: 10.7755/FB.115.3.2)
Alewijnse, S. R. & Wells, R. J. D. Diet of the Blacktip Shark (Carcharhinus limbatus) in the Northwestern Gulf of Mexico. Gulf Caribb. Res. 31, 25–30 (2020). (PMID: 10.18785/gcr.3101.12)
Snodgrass, D. J. G., Orbesen, E. S., Walter, J. F., Hoolihan, J. P. & Brown, C. A. Potential impacts of oil production platforms and their function as fish aggregating devices on the biology of highly migratory fish species. Rev. Fish Biol. Fish. 30, 405–422 (2020). (PMID: 10.1007/s11160-020-09605-z)
Ou, Y. et al. A numerical investigation of salinity variations in the Barataria Estuary, Louisiana in connection with the Mississippi River and restoration activities. Estuar. Coast. Shelf Sci. 245, 107021 (2020). (PMID: 10.1016/j.ecss.2020.107021)
Magozzi, S., Yool, A., Zanden, H. B. V., Wunder, M. B. & Trueman, C. N. Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8, e01763 (2017). (PMID: 10.1002/ecs2.1763)
Rooker, J. R. et al. Nursery origin of yellowfin tuna in the western Atlantic Ocean: Significance of Caribbean Sea and trans-Atlantic migrants. Sci. Rep. 13, 16277 (2023). (PMID: 377705511053953510.1038/s41598-023-43163-1)
Olson, R. J. & Boggs, C. H. Apex predation by yellowfin tuna (Thunnus albacares): Independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can. J. Fish. Aquat. Sci. 43, 1760–1775 (1986). (PMID: 10.1139/f86-220)
Klinger, D. H. et al. The effect of temperature on postprandial metabolism of yellowfin tuna (Thunnus albacares). Comp. Biochem. Physiol. A 195, 32–38 (2016). (PMID: 10.1016/j.cbpa.2016.01.005)
Dahl, K. A., Patterson, W. F., Robertson, A. & Ortmann, A. C. DNA barcoding significantly improves resolution of invasive lionfish diet in the Northern Gulf of Mexico. Biol. Invasions 19, 1917–1933 (2017). (PMID: 10.1007/s10530-017-1407-3)
Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food web studies. Can. J. Zool. 92, 823–835 (2014). (PMID: 10.1139/cjz-2014-0127) - الرقم المعرف: 0 (Carbon Isotopes)
0 (Nitrogen Isotopes) - الموضوع: Date Created: 20240729 Date Completed: 20240729 Latest Revision: 20240806
- الموضوع: 20240807
- الرقم المعرف: PMC11286940
- الرقم المعرف: 10.1038/s41598-024-63557-z
- الرقم المعرف: 39075103
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.