Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Insights into the Interaction Mechanisms of Peptide and Non-Peptide Inhibitors with MDM2 Using Gaussian-Accelerated Molecular Dynamics Simulations and Deep Learning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Yang W;Yang W; Wang J; Wang J; Zhao L; Zhao L; Chen J; Chen J
  • المصدر:
    Molecules (Basel, Switzerland) [Molecules] 2024 Jul 18; Vol. 29 (14). Date of Electronic Publication: 2024 Jul 18.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 100964009 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-3049 (Electronic) Linking ISSN: 14203049 NLM ISO Abbreviation: Molecules Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Basel, Switzerland : MDPI, c1995-
    • الموضوع:
    • نبذة مختصرة :
      Inhibiting MDM2-p53 interaction is considered an efficient mode of cancer treatment. In our current study, Gaussian-accelerated molecular dynamics (GaMD), deep learning (DL), and binding free energy calculations were combined together to probe the binding mechanism of non-peptide inhibitors K23 and 0Y7 and peptide ones PDI6W and PDI to MDM2. The GaMD trajectory-based DL approach successfully identified significant functional domains, predominantly located at the helixes α2 and α2', as well as the β-strands and loops between α2 and α2'. The post-processing analysis of the GaMD simulations indicated that inhibitor binding highly influences the structural flexibility and collective motions of MDM2. Calculations of molecular mechanics-generalized Born surface area (MM-GBSA) and solvated interaction energy (SIE) not only suggest that the ranking of the calculated binding free energies is in agreement with that of the experimental results, but also verify that van der Walls interactions are the primary forces responsible for inhibitor-MDM2 binding. Our findings also indicate that peptide inhibitors yield more interaction contacts with MDM2 compared to non-peptide inhibitors. Principal component analysis (PCA) and free energy landscape (FEL) analysis indicated that the piperidinone inhibitor 0Y7 shows the most pronounced impact on the free energy profiles of MDM2, with the piperidinone inhibitor demonstrating higher fluctuation amplitudes along primary eigenvectors. The hot spots of MDM2 revealed by residue-based free energy estimation provide target sites for drug design toward MDM2. This study is expected to provide useful theoretical aid for the development of selective inhibitors of MDM2 family members.
    • References:
      J Chem Inf Model. 2023 May 8;63(9):2728-2734. (PMID: 37079618)
      J Biomol Struct Dyn. 2022 Aug;40(12):5577-5587. (PMID: 33438527)
      Molecules. 2024 Jun 05;29(11):. (PMID: 38893554)
      J Chem Phys. 2020 Oct 21;153(15):154109. (PMID: 33092378)
      Proteins. 2004 May 1;55(2):383-94. (PMID: 15048829)
      Int J Mol Sci. 2012;13(2):2176-2195. (PMID: 22408446)
      J Med Chem. 2015 Aug 27;58(16):6348-58. (PMID: 26181851)
      Bioorg Med Chem Lett. 2015 Sep 1;25(17):3621-5. (PMID: 26141769)
      J Comput Chem. 2005 Dec;26(16):1668-88. (PMID: 16200636)
      J Comput Chem. 2004 Jul 15;25(9):1157-74. (PMID: 15116359)
      J Chem Theory Comput. 2022 Mar 8;18(3):1423-1436. (PMID: 35200019)
      Cancer Sci. 2010 Apr;101(4):831-5. (PMID: 20132225)
      Adv Appl Bioinform Chem. 2022 Jan 06;15:1-19. (PMID: 35023931)
      JACS Au. 2023 Nov 02;3(11):3165-3180. (PMID: 38034960)
      J Mol Cell Biol. 2017 Feb 1;9(1):3-15. (PMID: 28077607)
      J Chem Inf Model. 2022 Dec 12;62(23):6118-6132. (PMID: 36440874)
      Front Oncol. 2020 Aug 05;10:1389. (PMID: 32850448)
      Molecules. 2023 Jun 15;28(12):. (PMID: 37375347)
      J Chem Phys. 2014 Jul 7;141(1):014111. (PMID: 25005281)
      Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5):. (PMID: 34899998)
      J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
      J Phys Chem B. 2009 Oct 8;113(40):13279-90. (PMID: 19757835)
      J Mol Biol. 2008 Jun 13;379(4):787-802. (PMID: 18479705)
      Theranostics. 2022 Sep 11;12(15):6665-6681. (PMID: 36185610)
      Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14321-6. (PMID: 20660730)
      Science. 1996 Nov 8;274(5289):948-53. (PMID: 8875929)
      J Chem Theory Comput. 2020 Jan 14;16(1):528-552. (PMID: 31714766)
      Molecules. 2021 May 20;26(10):. (PMID: 34065494)
      Org Biomol Chem. 2020 Jul 22;18(28):5359-5369. (PMID: 32390036)
      J Chem Theory Comput. 2015 Aug 11;11(8):3584-3595. (PMID: 26300708)
      BMC Mol Cell Biol. 2021 Sep 22;22(1):46. (PMID: 34551723)
      Int J Mol Sci. 2020 Dec 29;22(1):. (PMID: 33383937)
      J Biomol Struct Dyn. 2023 Dec 18;:1-12. (PMID: 38111168)
      J Phys Chem B. 2008 Jul 31;112(30):9020-41. (PMID: 18593145)
      Molecules. 2019 Jun 02;24(11):. (PMID: 31159491)
      J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. (PMID: 26592383)
      Biomol Concepts. 2014 Mar;5(1):9-19. (PMID: 25372739)
      J Comput Chem. 2002 Dec;23(16):1623-41. (PMID: 12395429)
      Expert Opin Drug Discov. 2015 May;10(5):449-61. (PMID: 25835573)
      Annu Rep Comput Chem. 2017;13:231-278. (PMID: 29720925)
      Comput Struct Biotechnol J. 2022;20:5014-5027. (PMID: 36091720)
      J Biol Chem. 2010 Jan 15;285(3):2174-83. (PMID: 19910468)
      Angew Chem Int Ed Engl. 2010 May 10;49(21):3649-52. (PMID: 20449836)
      ACS Med Chem Lett. 2013 Apr 02;4(5):466-9. (PMID: 24900694)
      Sci Rep. 2020 Jul 10;10(1):11449. (PMID: 32651397)
      Cell Cycle. 2009 Apr 15;8(8):1176-84. (PMID: 19305137)
      Structure. 2019 Jun 4;27(6):1034-1040.e3. (PMID: 31031199)
      Eur J Med Chem. 2018 Nov 5;159:1-9. (PMID: 30253242)
      J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. (PMID: 26583988)
      J Chem Theory Comput. 2014 Jul 8;10(7):2677-2689. (PMID: 25061441)
      Molecules. 2023 Sep 16;28(18):. (PMID: 37764441)
      Biophys J. 2015 Oct 20;109(8):1528-32. (PMID: 26488642)
      Nat Rev Cancer. 2018 Feb;18(2):89-102. (PMID: 29242642)
      Mol Biol Rep. 2023 Aug;50(8):6871-6883. (PMID: 37314603)
      J Chem Theory Comput. 2012 May 8;8(5):1542-1555. (PMID: 22582031)
      J Chem Theory Comput. 2012 Sep 11;8(9):3314-21. (PMID: 26605738)
      Molecules. 2024 May 15;29(10):. (PMID: 38792177)
      ACS Med Chem Lett. 2014 Jun 30;5(8):894-9. (PMID: 25147610)
      J Mol Graph Model. 2013 Nov;46:132-9. (PMID: 24211465)
      Br J Cancer. 2019 Feb;120(3):286-293. (PMID: 30585255)
      Eur J Med Chem. 2022 Jun 5;236:114334. (PMID: 35429910)
      Molecules. 2024 Apr 19;29(8):. (PMID: 38675678)
      Curr Cancer Drug Targets. 2018;18(8):749-772. (PMID: 28669344)
      Molecules. 2020 Mar 07;25(5):. (PMID: 32156064)
      J Mol Graph Model. 2011 Sep;30:46-53. (PMID: 21764342)
      Gene. 2011 Oct 15;486(1-2):23-30. (PMID: 21762762)
      Front Chem. 2019 Jan 29;7:33. (PMID: 30761293)
      Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12162-12167. (PMID: 27791003)
      Nucleic Acids Res. 2019 Jul 26;47(13):6618-6631. (PMID: 31173143)
      Biopolymers. 1983 Dec;22(12):2577-637. (PMID: 6667333)
      Acta Pharm Sin B. 2020 Jul;10(7):1253-1278. (PMID: 32874827)
      Cell Cycle. 2010 Mar 15;9(6):1104-11. (PMID: 20237429)
      J Mol Model. 2009 Aug;15(8):983-96. (PMID: 19198900)
      Nat Rev Cancer. 2013 Feb;13(2):83-96. (PMID: 23303139)
      J Mol Biol. 2003 Jul 18;330(4):891-913. (PMID: 12850155)
      J Cell Biochem. 2022 Dec;123(12):1891-1937. (PMID: 36183376)
      J Biomol Struct Dyn. 2021 Jul;39(11):4005-4014. (PMID: 32448094)
      Proteins. 1991;11(3):205-17. (PMID: 1749773)
      J Med Chem. 2014 Aug 14;57(15):6332-41. (PMID: 24967612)
      J Chem Theory Comput. 2011 Oct 11;7(10):3354-67. (PMID: 26598167)
      Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41. (PMID: 22570416)
      Int J Mol Sci. 2020 Jul 04;21(13):. (PMID: 32635537)
      Chem Rev. 2019 Aug 28;119(16):9478-9508. (PMID: 31244000)
      J Chem Inf Model. 2007 Jan-Feb;47(1):122-33. (PMID: 17238257)
      Life Sci. 2020 Mar 15;245:117358. (PMID: 32001262)
      Chem Biol Drug Des. 2015 Dec;86(6):1351-9. (PMID: 26032728)
      J Am Chem Soc. 2012 Oct 17;134(41):17059-67. (PMID: 22991965)
      J Chem Phys. 2020 Sep 21;153(11):114502. (PMID: 32962378)
      J Mol Graph Model. 2006 Oct;25(2):247-60. (PMID: 16458552)
      J Chem Theory Comput. 2020 Sep 8;16(9):5526-5547. (PMID: 32692556)
      Comput Biol Med. 2021 Aug;135:104639. (PMID: 34247129)
      Pediatr Blood Cancer. 2016 Oct;63(10):1744-52. (PMID: 27238606)
      Proteins. 2006 Jan 1;62(1):244-61. (PMID: 16287115)
      J Biomed Biotechnol. 2011;2011:603925. (PMID: 21188172)
      Pharmacol Rev. 2024 May 2;76(3):414-453. (PMID: 38697854)
      Int J Mol Sci. 2022 Apr 30;23(9):. (PMID: 35563397)
      Med Res Rev. 2016 Sep;36(5):789-844. (PMID: 27302609)
      Nat Rev Drug Discov. 2014 Mar;13(3):217-36. (PMID: 24577402)
    • Contributed Indexing:
      Keywords: Gaussian-accelerated dynamics simulations; MDM2; binding free energy; deep learning; peptide inhibitors
    • الرقم المعرف:
      EC 2.3.2.27 (Proto-Oncogene Proteins c-mdm2)
      0 (Peptides)
      EC 2.3.2.27 (MDM2 protein, human)
    • الموضوع:
      Date Created: 20240727 Date Completed: 20240728 Latest Revision: 20240729
    • الموضوع:
      20240729
    • الرقم المعرف:
      PMC11279683
    • الرقم المعرف:
      10.3390/molecules29143377
    • الرقم المعرف:
      39064955