Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A novel ECG compression algorithm using Pulse-Width Modulation integrated quantization for low-power real-time monitoring.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Cardiac monitoring systems in Internet of Things (IoT) healthcare, reliant on limited battery and computational capacity, need efficient local processing and wireless transmission for comprehensive analysis. Due to the power-intensive wireless transmission in IoT devices, ECG signal compression is essential to minimize data transfer. This paper presents a real-time, low-complexity algorithm for compressing electrocardiogram (ECG) signals. The algorithm uses just nine arithmetic operations per ECG sample point, generating a hybrid Pulse Width Modulation (PWM) signal storable in a compact 4-bit resolution format. Despite its simplicity, it performs comparably to existing methods in terms of Percentage Root-Mean-Square Difference (PRD) and space-saving while significantly reducing complexity and maintaining robustness against signal noise. It achieves an average Bit Compression Ratio (BCR) of 4 and space savings of 90.4% for ECG signals in the MIT-BIH database, with a PRD of 0.33% and a Quality Score (QS) of 12. The reconstructed signal shows no adverse effects on QRS complex detection and heart rate variability, preserving both the signal amplitude and periodicity. This efficient method for transferring ECG data from wearable devices enables real-time cardiac activity monitoring with reduced data storage requirements. Its versatility suggests potential broader applications, extending to compression of various signal types beyond ECG.
      (© 2024. The Author(s).)
    • References:
      Med Eng Phys. 2004 Sep;26(7):553-68. (PMID: 15271283)
      Diagnostics (Basel). 2018 Jan 16;8(1):. (PMID: 29337892)
      Sensors (Basel). 2020 Jan 09;20(2):. (PMID: 31936540)
      Med Biol Eng Comput. 1992 Mar;30(2):187-92. (PMID: 1453784)
      J Healthc Eng. 2018 May 8;2018:9050812. (PMID: 29854370)
      IEEE Trans Biomed Eng. 1993 Sep;40(9):877-85. (PMID: 8288278)
      IEEE Trans Biomed Eng. 1982 Jan;29(1):43-8. (PMID: 7076268)
      IEEE Trans Biomed Eng. 1985 May;32(5):337. (PMID: 3997187)
      Biomed Sci Instrum. 1978 Apr 17-18;14:81-5. (PMID: 687739)
      Med Eng Phys. 2001 Mar;23(2):127-34. (PMID: 11413065)
      IEEE Trans Biomed Eng. 1990 Apr;37(4):329-43. (PMID: 2186997)
      Rocky Mt Med J. 1949 Sep;46(9):747-51. (PMID: 18137532)
      IEEE Eng Med Biol Mag. 2001 May-Jun;20(3):45-50. (PMID: 11446209)
      Circulation. 2000 Jun 13;101(23):E215-20. (PMID: 10851218)
      IEEE Trans Biomed Eng. 1968 Apr;15(2):128-9. (PMID: 5648088)
      IEEE Trans Biomed Eng. 1985 Mar;32(3):230-6. (PMID: 3997178)
    • Contributed Indexing:
      Keywords: ECG compression; Hybrid PWM; Low-complexity; Nearly-perfect reconstruction; Real-time algorithm
    • الموضوع:
      Date Created: 20240726 Date Completed: 20240727 Latest Revision: 20240806
    • الموضوع:
      20240806
    • الرقم المعرف:
      PMC11282075
    • الرقم المعرف:
      10.1038/s41598-024-68022-5
    • الرقم المعرف:
      39060441