Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The metabolic pathways of carbon assimilation and polyhydroxyalkanoate production by Rhodospirillum rubrum in response to different atmospheric fermentation.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- المصدر:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- بيانات النشر:
Original Publication: San Francisco, CA : Public Library of Science
- الموضوع:
- نبذة مختصرة :
The purple nonsulfur bacteria, Rhodospirillum rubrum, is recognized as a potential strain for PHAs bioindustrial processes since they can assimilate a broad range of carbon sources, such as syngas, to allow reduction of the production costs. In this study, we comparatively analyzed the biomass and PHA formation behaviors of R. rubrum under 100% CO and 50% CO gas atmosphere and found that pure CO promoted the PHA synthesis (PHA content up to 23.3% of the CDW). Hydrogen addition facilitated the uptake and utilization rates of CO and elevated 3-HV monomers content (molar proportion of 3-HV up to 9.2% in the presence of 50% H2). To elucidate the genetic events culminating in the CO assimilation process, we performed whole transcriptome analysis of R. rubrum grown under 100% CO or 50% CO using RNA sequencing. Transcriptomic analysis indicated different CO2 assimilation strategy was triggered by the presence of H2, where the CBB played a minor role. An increase in BCAA biosynthesis related gene abundance was observed under 50% CO condition. Furthermore, we detected the α-ketoglutarate (αKG) synthase, converting fumarate to αKG linked to the αKG-derived amino acids synthesis, and series of threonine-dependent isoleucine synthesis enzymes were significantly induced. Collectively, our results suggested that those amino acid synthesis pathways represented a key way for carbon assimilation and redox potential maintenance by R. rubrum growth under syngas condition, which could partly replace the PHA production and affect its monomer composition in copolymers. Finally, a fed-batch fermentation of the R. rubrum in a 3-l bioreactor was carried out and proved H2 addition indeed increased the PHA accumulation rate, yielding 20% ww-1 PHA production within six days.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
J Bacteriol. 1995 Apr;177(8):2241-4. (PMID: 7721719)
Arch Microbiol. 2011 Feb;193(2):151-4. (PMID: 21104179)
J Appl Microbiol. 2007 Jun;102(6):1437-49. (PMID: 17578408)
Bioresour Technol. 2010 Jul;101(13):5013-22. (PMID: 20096574)
Faraday Discuss. 2017 Sep 21;202:175-195. (PMID: 28654113)
Bioresour Technol. 2016 Sep;215:386-396. (PMID: 27095410)
Environ Microbiol. 2016 Feb;18(2):708-20. (PMID: 26472698)
Appl Microbiol Biotechnol. 2024 Mar 11;108(1):258. (PMID: 38466440)
J Bacteriol. 2014 Mar;196(6):1231-7. (PMID: 24415727)
Front Bioeng Biotechnol. 2019 Apr 02;7:59. (PMID: 31001525)
Arch Microbiol. 2000 Mar;173(3):193-9. (PMID: 10763751)
Microb Cell Fact. 2023 Mar 10;22(1):47. (PMID: 36899367)
Microbiology (Reading). 2015 May;161(Pt 5):1061-1072. (PMID: 25737481)
J Biotechnol. 2001 Mar 30;86(2):97-104. (PMID: 11245898)
Free Radic Biol Med. 2013 Mar;56:89-101. (PMID: 23195683)
Microb Biotechnol. 2017 Nov;10(6):1365-1375. (PMID: 28585362)
Nat Chem Biol. 2012 Nov;8(11):926-32. (PMID: 23042035)
Adv Biochem Eng Biotechnol. 2001;71:81-123. (PMID: 11217418)
Bioresour Technol. 2003 Apr;87(2):137-46. (PMID: 12765352)
J Biosci Bioeng. 2010 Dec;110(6):621-32. (PMID: 20719562)
Appl Environ Microbiol. 2011 Apr;77(7):2435-44. (PMID: 21317262)
J Biotechnol. 2012 Dec 31;162(2-3):336-45. (PMID: 23036926)
Biotechnol Bioeng. 2007 Jun 1;97(2):279-86. (PMID: 17054121)
Curr Opin Biotechnol. 2014 Jun;27:79-87. (PMID: 24863900)
J Biol Chem. 2014 Mar 21;289(12):8151-69. (PMID: 24497638)
Antonie Van Leeuwenhoek. 1994;66(1-3):151-64. (PMID: 7747929)
Biotechnol Biofuels. 2021 Aug 6;14(1):168. (PMID: 34362414)
Appl Environ Microbiol. 2008 Jul;74(14):4477-90. (PMID: 18502919)
Appl Biochem Biotechnol. 2010 Feb;160(4):1032-46. (PMID: 19247588)
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6446-6451. (PMID: 29866825)
Front Microbiol. 2020 Mar 25;11:464. (PMID: 32269553)
BMC Microbiol. 2020 May 20;20(1):126. (PMID: 32434546)
Appl Environ Microbiol. 2018 Jan 17;84(3):. (PMID: 29180364)
Microbiology (Reading). 2020 Feb;166(2):199-211. (PMID: 31774392)
Int J Biol Macromol. 1989 Feb;11(1):49-55. (PMID: 2518731)
- الرقم المعرف:
0 (Polyhydroxyalkanoates)
7440-44-0 (Carbon)
7U1EE4V452 (Carbon Monoxide)
142M471B3J (Carbon Dioxide)
7YNJ3PO35Z (Hydrogen)
- الموضوع:
Date Created: 20240724 Date Completed: 20240724 Latest Revision: 20240728
- الموضوع:
20240728
- الرقم المعرف:
PMC11268599
- الرقم المعرف:
10.1371/journal.pone.0306222
- الرقم المعرف:
39046963
No Comments.