Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bayesian sequential monitoring strategies for trials of digestive cancer therapeutics.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100968545 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2288 (Electronic) Linking ISSN: 14712288 NLM ISO Abbreviation: BMC Med Res Methodol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2001-
    • الموضوع:
    • نبذة مختصرة :
      Background: New therapeutics in oncology have presented challenges to existing paradigms and trial designs in all phases of drug development. As a motivating example, we considered an ongoing phase II trial planned to evaluate the combination of a MET inhibitor and an anti-PD-L1 immunotherapy to treat advanced oesogastric carcinoma. The objective of the paper was to exemplify the planning of an adaptive phase II trial with novel anti-cancer agents, including prolonged observation windows and joint sequential evaluation of efficacy and toxicity.
      Methods: We considered various candidate designs and computed decision rules assuming correlations between efficacy and toxicity. Simulations were conducted to evaluate the operating characteristics of all designs.
      Results: Design approaches allowing continuous accrual, such as the time-to-event Bayesian Optimal Phase II design (TOP), showed good operating characteristics while ensuring a reduced trial duration. All designs were sensitive to the specification of the correlation between efficacy and toxicity during planning, but TOP can take that correlation into account more easily.
      Conclusions: While specifying design working hypotheses requires caution, Bayesian approaches such as the TOP design had desirable operating characteristics and allowed incorporating concomittant information, such as toxicity data from concomitant observations in another relevant patient population (e.g., defined by mutational status).
      (© 2024. The Author(s).)
    • References:
      Li Q, Lin J, Lin Y. Adaptive design implementation in confirmatory trials: methods, practical considerations and case studies. Contemp Clin Trials. 2020;98:106096. (PMID: 10.1016/j.cct.2020.10609632739496)
      Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med. 2016;8(1):1–14. (PMID: 10.1186/s13073-016-0369-x)
      Markman TM, Markman M. Cardio-Oncology: mechanisms of cardiovascular toxicity [version 1; peer review: 2 approved]. F1000Research. 2018;7(F1000 Faculty Rev):113. https://doi.org/10.12688/f1000research.12598.1 .
      Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol. 2016;13(2):92–105. (PMID: 10.1038/nrclinonc.2015.15226391778)
      Karakunnel JJ, Bui N, Palaniappan L, Schmidt KT, Mahaffey KW, Morrison B, et al. Reviewing the role of healthy volunteer studies in drug development. J Transl Med. 2018;16(1):1–15. (PMID: 10.1186/s12967-018-1710-5)
      Postel-Vinay S, Aspeslagh S, Lanoy E, Robert C, Soria JC, Marabelle A. Challenges of phase 1 clinical trials evaluating immune checkpoint-targeted antibodies. Ann Oncol. 2016;27(2):214–24. (PMID: 10.1093/annonc/mdv55026578728)
      Gray R, Manola J, Saxman S, Wright J, Dutcher J, Atkins M, et al. Phase II clinical trial design: methods in translational research from the Genitourinary Committee at the Eastern Cooperative Oncology Group. Clin Cancer Res. 2006;12(7):1966–9. (PMID: 10.1158/1078-0432.CCR-05-113616609005)
      Hobbs BP, Chen N, Lee JJ. Controlled multi-arm platform design using predictive probability. Stat Methods Med Res. 2018;27(1):65–78. (PMID: 10.1177/096228021562069626763586)
      Ding Y. A randomized Bayesian optimal phase II design with binary endpoint. J Biopharm Stat. 2023;33(2):151–66. (PMID: 10.1080/10543406.2022.209493835793222)
      Li Q, Lin J, Liu M, Wu L, Liu Y. Using surrogate endpoints in adaptive designs with delayed treatment effect. Stat Biopharm Res. 2022;14(4):661–70. (PMID: 10.1080/19466315.2021.1938203)
      Ghisoni E, Wicky A, Bouchaab H, Imbimbo M, Delyon J, Moura BG, et al. Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: an overlooked aspect in immunotherapy. Eur J Cancer. 2021;149:153–64. (PMID: 10.1016/j.ejca.2021.03.01033865201)
      Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018;29(1):84–91. (PMID: 10.1093/annonc/mdx75529228097)
      Song G, Ivanova A. Enrollment and stopping rules for managing toxicity requiring long follow-up in phase II oncology trials. J Biopharm Stat. 2015;25(6):1206–14. (PMID: 10.1080/10543406.2015.1086779263839174689581)
      Iasonos A, O’Quigley J. Dose expansion cohorts in phase I trials. Stat Biopharm Res. 2016;8(2):161–70. (PMID: 10.1080/19466315.2015.1135185275168484976787)
      Ryan EG, Brock K, Gates S, Slade D. Do we need to adjust for interim analyses in a Bayesian adaptive trial design? BMC Med Res Methodol. 2020;20(1):1–9. (PMID: 10.1186/s12874-020-01042-7)
      Stallard N, Todd S, Ryan EG, Gates S. Comparison of Bayesian and frequentist group-sequential clinical trial designs. BMC Med Res Methodol. 2020;20(1):1–14. (PMID: 10.1186/s12874-019-0892-8)
      Jennison C, Turnbull BW. Group sequential methods with applications to clinical trials. CRC Press; 1999.
      Litiere S, Collette S, de Vries EG, Seymour L, Bogaerts J. RECIST–learning from the past to build the future. Nat Rev Clin Oncol. 2017;14(3):187–92. (PMID: 10.1038/nrclinonc.2016.19527995946)
      Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52. (PMID: 10.1016/S1470-2045(17)30074-8282718695648544)
      Li H, Li CW, Li X, Ding Q, Guo L, Liu S, et al. MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1. Gastroenterology. 2019;156(6):1849–61. (PMID: 10.1053/j.gastro.2019.01.25230711629)
      Glodde N, Bald T, van den Boorn-Konijnenberg D, Nakamura K, O’Donnell JS, Szczepanski S, et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity. 2017;47(4):789–802. (PMID: 10.1016/j.immuni.2017.09.01229045907)
      Lin R, Coleman RL, Yuan Y. TOP: Time-to-event Bayesian optimal phase II trial design for cancer immunotherapy. J Natl Cancer Inst. 2020;112(1):38–45. (PMID: 10.1093/jnci/djz04930924863)
      Zhou H, Lee JJ, Yuan Y. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints. Stat Med. 2017;36(21):3302–14. (PMID: 10.1002/sim.733828589563)
      Ivanova A, Song G, Marchenko O, Moschos S. Monitoring rules for toxicity in phase II oncology trials. Clin Investig. 2015;5(4):373–81. (PMID: 10.4155/cli.15.2)
      Thall PF, Simon RM, Estey EH. New statistical strategy for monitoring safety and efficacy in single-arm clinical trials. J Clin Oncol. 1996;14(1):296–303. (PMID: 10.1200/JCO.1996.14.1.2968558211)
      Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10(1):1–10. (PMID: 10.1016/0197-2456(89)90015-92702835)
      Palmieri DJ, Carlino MS. Immune checkpoint inhibitor toxicity. Curr Oncol Rep. 2018;20(9):1–12. (PMID: 10.1007/s11912-018-0718-6)
      Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):1–11. (PMID: 10.1186/s40425-019-0805-8)
      Bryant J, Day R. Incorporating toxicity considerations into the design of two-stage phase II clinical trials. Biometrics. 1995;51(4):1372–83.
      Tournoux C, De Rycke Y, Médioni J, Asselain B. Methods of joint evaluation of efficacy and toxicity in phase II clinical trials. Contemp Clin Trials. 2007;28(4):514–24. (PMID: 10.1016/j.cct.2007.01.00817331808)
      Pallmann P, Bedding AW, Choodari-Oskooei B, Dimairo M, Flight L, Hampson LV, et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 2018;16(1):1–15. (PMID: 10.1186/s12916-018-1017-7)
      Stallard N, Hampson L, Benda N, Brannath W, Burnett T, Friede T, et al. Efficient adaptive designs for clinical trials of interventions for COVID-19. Stat Biopharm Res. 2020;12(4):483–97. (PMID: 10.1080/19466315.2020.1790415341919818011600)
      Koopmeiners JS, Modiano J. A Bayesian adaptive phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes. Clin Trials. 2014;11(1):38–48. (PMID: 10.1177/174077451350058924082004)
      Kaufman HL, Atkins MB, Subedi P, Wu J, Chambers J, Joseph Mattingly T, et al. The promise of Immuno-oncology: implications for defining the value of cancer treatment. J Immunother Cancer. 2019;7(1):1–11. (PMID: 10.1186/s40425-019-0594-0)
      Cai C, Liu S, Yuan Y. A Bayesian design for phase II clinical trials with delayed responses based on multiple imputation. Stat Med. 2014;33(23):4017–28. (PMID: 10.1002/sim.6200248175564435968)
      Bassler D, Montori VM, Briel M, Glasziou P, Guyatt G. Early stopping of randomized clinical trials for overt efficacy is problematic. J Clin Epidemiol. 2008;61(3):241–6. (PMID: 10.1016/j.jclinepi.2007.07.01618226746)
    • Contributed Indexing:
      Keywords: Adaptive design; Bayesian; Oncology; Phase II
    • الرقم المعرف:
      0 (Antineoplastic Agents)
    • الموضوع:
      Date Created: 20240719 Date Completed: 20240719 Latest Revision: 20240719
    • الموضوع:
      20240720
    • الرقم المعرف:
      10.1186/s12874-024-02278-3
    • الرقم المعرف:
      39030498