Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Differences in the consolidation by spontaneous and evoked ripples in the presence of active dendrites.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science, [2005]-
    • الموضوع:
    • نبذة مختصرة :
      Ripples are a typical form of neural activity in hippocampal neural networks associated with the replay of episodic memories during sleep as well as sleep-related plasticity and memory consolidation. The emergence of ripples has been observed both dependent as well as independent of input from other brain areas and often coincides with dendritic spikes. Yet, it is unclear how input-evoked and spontaneous ripples as well as dendritic excitability affect plasticity and consolidation. Here, we use mathematical modeling to compare these cases. We find that consolidation as well as the emergence of spontaneous ripples depends on a reliable propagation of activity in feed-forward structures which constitute memory representations. This propagation is facilitated by excitable dendrites, which entail that a few strong synapses are sufficient to trigger neuronal firing. In this situation, stimulation-evoked ripples lead to the potentiation of weak synapses within the feed-forward structure and, thus, to a consolidation of a more general sequence memory. However, spontaneous ripples that occur without stimulation, only consolidate a sparse backbone of the existing strong feed-forward structure. Based on this, we test a recently hypothesized scenario in which the excitability of dendrites is transiently enhanced after learning, and show that such a transient increase can strengthen, restructure and consolidate even weak hippocampal memories, which would be forgotten otherwise. Hence, a transient increase in dendritic excitability would indeed provide a mechanism for stabilizing memories.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Jauch et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Front Neural Circuits. 2017 Dec 13;11:102. (PMID: 29321728)
      J Neurosci. 2000 Mar 15;20(6):2086-93. (PMID: 10704482)
      Nat Neurosci. 2018 Feb;21(2):258-269. (PMID: 29335604)
      J Physiol. 1997 Apr 15;500 ( Pt 2):409-40. (PMID: 9147328)
      Biosystems. 2013 Jun;112(3):258-64. (PMID: 23542676)
      Neuron. 2001 Sep 13;31(5):831-40. (PMID: 11567620)
      Neurobiol Learn Mem. 2019 Apr;160:98-107. (PMID: 29723670)
      Hippocampus. 2015 Oct;25(10):1073-188. (PMID: 26135716)
      Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11092-7. (PMID: 20511534)
      Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29948-29958. (PMID: 33177232)
      Cell. 2016 Mar 24;165(1):180-191. (PMID: 26997481)
      PLoS Comput Biol. 2016 Apr 19;12(4):e1004880. (PMID: 27093059)
      Curr Opin Neurobiol. 2017 Jun;44:20-27. (PMID: 28278432)
      J Neurosci. 1981 Mar;1(3):318-22. (PMID: 7264721)
      J Neurosci. 1999 Nov 1;19(21):9497-507. (PMID: 10531452)
      Neuroimage. 2019 Oct 1;199:81-86. (PMID: 31145982)
      J Physiol. 2003 Aug 1;550(Pt 3):873-87. (PMID: 12807984)
      PLoS Comput Biol. 2017 Jan 30;13(1):e1005359. (PMID: 28135266)
      Neuron. 2013 Dec 18;80(6):1438-50. (PMID: 24360546)
      J Neurosci. 1999 May 15;19(10):4090-101. (PMID: 10234037)
      J Neurosci. 2003 Aug 27;23(21):7750-8. (PMID: 12944503)
      PLoS Comput Biol. 2022 Jun 21;18(6):e1010233. (PMID: 35727857)
      Brain Res. 1986 Nov 29;398(2):242-52. (PMID: 3026567)
      J Neurophysiol. 2003 Jul;90(1):415-30. (PMID: 12611969)
      J Neurophysiol. 2007 Apr;97(4):2965-75. (PMID: 17267749)
      PLoS Comput Biol. 2015 Jan 15;11(1):e1004031. (PMID: 25590330)
      J Neurosci. 2015 Dec 09;35(49):16236-58. (PMID: 26658873)
      Brain Res. 1983 Oct;287(2):139-71. (PMID: 6357356)
      Science. 2019 Jun 14;364(6445):1082-1086. (PMID: 31197012)
      Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12919-24. (PMID: 25139992)
      J Neurosci. 2008 Dec 24;28(52):14271-81. (PMID: 19109508)
      Cell Rep. 2018 Nov 13;25(7):1693-1700.e4. (PMID: 30428340)
      Neural Comput. 2006 Apr;18(4):904-41. (PMID: 16494695)
      Front Neuroanat. 2016 Jun 28;10:75. (PMID: 27445713)
      Neuron. 2014 Jan 8;81(1):12-34. (PMID: 24411729)
      Front Comput Neurosci. 2013 Nov 15;7:153. (PMID: 24298251)
      Front Syst Neurosci. 2019 Feb 01;13:2. (PMID: 30774586)
      Curr Opin Neurobiol. 2011 Jun;21(3):452-9. (PMID: 21371881)
      Cell Rep. 2016 Mar 1;14(8):1916-29. (PMID: 26904941)
      Nat Neurosci. 2004 Feb;7(2):126-35. (PMID: 14730307)
      Front Mol Neurosci. 2019 Dec 06;12:300. (PMID: 31866824)
      J Physiol. 2005 Mar 15;563(Pt 3):663-70. (PMID: 15661820)
      J Neurosci. 2020 Oct 7;40(41):7811-7836. (PMID: 32913107)
      Neuron. 2000 Nov;28(2):585-94. (PMID: 11144366)
      J Physiol. 2006 Sep 1;575(Pt 2):583-602. (PMID: 16793907)
      Neuroscience. 1996 Oct;74(4):1009-18. (PMID: 8895869)
      J Neurobiol. 2005 Jul;64(1):100-15. (PMID: 15884001)
      Nature. 1998 Jul 9;394(6689):189-92. (PMID: 9671303)
      Hippocampus. 2015 Feb;25(2):169-86. (PMID: 25209976)
      Neuron. 2009 Jun 25;62(6):781-7. (PMID: 19555647)
      Curr Opin Neurobiol. 2017 Jun;44:72-79. (PMID: 28399462)
      J Neurosci. 2004 Mar 10;24(10):2345-56. (PMID: 15014109)
      Neuron. 2022 Mar 16;110(6):977-991.e4. (PMID: 35041805)
      Neuroscience. 1989;31(3):551-70. (PMID: 2687720)
      Science. 1994 Jul 29;265(5172):676-9. (PMID: 8036517)
      Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16463-8. (PMID: 19805321)
      Neural Netw. 2001 Jul-Sep;14(6-7):657-73. (PMID: 11665761)
      Science. 2014 Jun 6;344(6188):1173-8. (PMID: 24904169)
      J Neurosci. 1998 May 15;18(10):3919-28. (PMID: 9570819)
      Physiol Rev. 2008 Apr;88(2):769-840. (PMID: 18391179)
      Neuroscience. 1999;92(2):407-26. (PMID: 10408594)
      J Physiol. 2002 Feb 1;538(Pt 3):803-22. (PMID: 11826166)
      Neuron. 2014 Jul 16;83(2):467-480. (PMID: 25033186)
      Neural Comput. 1999 Oct 1;11(7):1621-71. (PMID: 10490941)
      Front Comput Neurosci. 2011 Nov 10;5:47. (PMID: 22203799)
      J Neurosci. 2014 Aug 20;34(34):11385-98. (PMID: 25143618)
      Nature. 2012 Feb 19;483(7387):92-5. (PMID: 22343892)
      Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):. (PMID: 34301882)
      Nat Neurosci. 2009 Oct;12(10):1222-3. (PMID: 19749750)
      Nat Neurosci. 2012 Mar 04;15(4):600-6. (PMID: 22388958)
      J Neurosci. 2002 Mar 1;22(5):1956-66. (PMID: 11880526)
      Nat Neurosci. 2007 Oct;10(10):1241-2. (PMID: 17828259)
      Science. 2018 Mar 30;359(6383):1524-1527. (PMID: 29439023)
      Neuroscience. 2022 May 1;489:165-175. (PMID: 34998890)
      J Neurophysiol. 1995 Mar;73(3):1282-94. (PMID: 7608771)
      J Neurosci. 2018 Mar 21;38(12):3124-3146. (PMID: 29453207)
      J Physiol. 1999 Nov 15;521 Pt 1:169-90. (PMID: 10562343)
      Front Behav Neurosci. 2014 Apr 22;8:134. (PMID: 24795585)
      J Neurosci. 2011 Jun 8;31(23):8605-16. (PMID: 21653864)
    • الموضوع:
      Date Created: 20240625 Date Completed: 20240708 Latest Revision: 20240710
    • الموضوع:
      20240710
    • الرقم المعرف:
      PMC11230591
    • الرقم المعرف:
      10.1371/journal.pcbi.1012218
    • الرقم المعرف:
      38917228