Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Microglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.
      (© 2024. The Author(s).)
    • References:
      Cunnane, S. C. et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633 (2020). (PMID: 32709961794851610.1038/s41573-020-0072-x)
      Kann, O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol. Dis. 90, 75–85 (2016). (PMID: 2628489310.1016/j.nbd.2015.08.005)
      Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010). (PMID: 21068832320673710.1038/nature09613)
      Schneider, J. et al. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus. J. Cereb. Blood Flow Metab. 39, 859–873 (2019). (PMID: 2909966210.1177/0271678X17740091)
      Mächler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016). (PMID: 2669891410.1016/j.cmet.2015.10.010)
      Schousboe, A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosc. Lett. 689, 11–13 (2019). (PMID: 10.1016/j.neulet.2018.01.038)
      Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522-1535.e14 (2019). (PMID: 3113038010.1016/j.cell.2019.04.001)
      Mi, Y. et al. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab. 5, 445–465 (2023). (PMID: 369595141020203410.1038/s42255-023-00756-4)
      Kann, O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J. Neurochem.168, 608–631 (2024). (PMID: 3730960210.1111/jnc.15867)
      Prinz, M., Jung, S. & Priller, J. Microglia biology: One century of evolving concepts. Cell 179, 292–311 (2019). (PMID: 3158507710.1016/j.cell.2019.08.053)
      Chausse, B., Kakimoto, P. A. & Kann, O. Microglia and lipids: How metabolism controls brain innate immunity. Semin. Cell. Dev. Biol. 112, 137–144 (2021). (PMID: 3280764310.1016/j.semcdb.2020.08.001)
      Kann, O., Almouhanna, F. & Chausse, B. Interferon γ: A master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci. 45, 913–927 (2022). (PMID: 3628386710.1016/j.tins.2022.10.007)
      Chausse, B., Lewen, A., Poschet, G. & Kann, O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav. Immun. 88, 802–814 (2020). (PMID: 3244694410.1016/j.bbi.2020.05.052)
      Orihuela, R., McPherson, C. A. & Harry, G. J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173, 649–665 (2016). (PMID: 2580004410.1111/bph.13139)
      Button, E. B. et al. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids 49, 305–316 (2014). (PMID: 2447375310.1007/s11745-014-3882-y)
      Chausse, B. et al. Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Biosci. Rep. 39, BSR20190072 (2019). (PMID: 30867255644952110.1042/BSR20190072)
      Nair, S. et al. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 67, 1047–1061 (2019). (PMID: 3063780510.1002/glia.23587)
      Monsorno, K. et al. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat. Commun. 14, 5749 (2023). (PMID: 377170331050521710.1038/s41467-023-41502-4)
      Mondo, E. et al. A developmental analysis of juxtavascular microglia dynamics and interactions with the vasculature. J. Neurosci. 40, 6503–6521 (2020). (PMID: 32661024748666610.1523/JNEUROSCI.3006-19.2020)
      Bernier, L. P. et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun. 11, 1559 (2020). (PMID: 32214088709644810.1038/s41467-020-15267-z)
      Xiang, X. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 13, eabe5640 (2021). (PMID: 3464414610.1126/scitranslmed.abe5640)
      Sabogal-Guáqueta, A. M. et al. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat. Commun. 14, 6465 (2023). (PMID: 10.1038/s41467-023-42096-7)
      York, E. M., Zhang, J., Choi, H. B. & MacVicar, B. A. Neuroinflammatory inhibition of synaptic long-term potentiation requires immunometabolic reprogramming of microglia. Glia 69, 567–578 (2021). (PMID: 3294614710.1002/glia.23913)
      Hollnagel, J. O. et al. Lactate attenuates synaptic transmission and affects brain rhythms featuring high energy expenditure. iScience 23, 101316 (2020). (PMID: 32653807735015310.1016/j.isci.2020.101316)
      Kann, O., Huchzermeyer, C., Kovács, R., Wirtz, S. & Schuelke, M. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain 134, 345–358 (2011). (PMID: 2118348710.1093/brain/awq333)
      Schilling, S. et al. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav. Immun. 96, 80–91 (2021). (PMID: 3401542810.1016/j.bbi.2021.05.013)
      Ta, T. T. et al. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc. Natl. Acad. Sci. USA 116, 4637–4642 (2019). (PMID: 30782788641078610.1073/pnas.1813562116)
      Duport, S. & Garthwaite, J. Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 135, 1155–1166 (2005). (PMID: 1616529510.1016/j.neuroscience.2005.06.035)
      Neumann, H., Misgeld, T., Matsumuro, K. & Wekerle, H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: Involvement of the p75 neurotrophin receptor. Proc. Natl. Acad. Sci. USA 95, 5779–5784 (1998). (PMID: 95769612045610.1073/pnas.95.10.5779)
      Papageorgiou, I. E. et al. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc. Natl. Acad. Sci. USA 113, 212–217 (2016). (PMID: 2669947510.1073/pnas.1513853113)
      Schneider, J. et al. A reliable model for gamma oscillations in hippocampal tissue. J. Neurosci. Res. 93, 1067–1078 (2015). (PMID: 2580804610.1002/jnr.23590)
      Bordt, E. A., Ceasrine, A. M. & Bilbo, S. D. Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors. Glia 68, 1085–1099 (2020). (PMID: 3174352710.1002/glia.23753)
      Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759-773.e8 (2017). (PMID: 28521131552381710.1016/j.neuron.2017.04.043)
      Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016). (PMID: 27189937493318210.1074/jbc.M115.685792)
      Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 110, 7820–7825 (2013). (PMID: 23610393365143410.1073/pnas.1218599110)
      Huang, M. et al. Microglial immune regulation by epigenetic reprogramming through histone H3K27 acetylation in neuroinflammation. Front. Immunol. 14, 1052925 (2023). (PMID: 370339671007354610.3389/fimmu.2023.1052925)
      Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016). (PMID: 27097852484468510.1038/ncomms11295)
      Delbridge, A. R. D. et al. Organotypic brain slice culture microglia exhibit molecular similarity to acutely-isolated adult microglia and provide a platform to study neuroinflammation. Front. Cell Neurosci. 14, 592005 (2020). (PMID: 33473245781291910.3389/fncel.2020.592005)
      Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). (PMID: 28099414540489010.1038/nature21029)
      Colgin, L. L. Rhythms of the hippocampal network. Nat. Rev. Neurosci. 17, 239–249 (2016). (PMID: 26961163489057410.1038/nrn.2016.21)
      Elzoheiry, S. et al. Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J. Cereb. Blood Flow Metab. 40, 2401–2415 (2020). (PMID: 3184266510.1177/0271678X19892657)
      Huchzermeyer, C., Berndt, N., Holzhütter, H. G. & Kann, O. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J. Cereb. Blood Flow Metab. 33, 263–271 (2013). (PMID: 2316853210.1038/jcbfm.2012.165)
      Berndt, N., Kann, O. & Holzhütter, H. G. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J. Cereb. Blood Flow Metab. 35, 1494–1506 (2015). (PMID: 25899300464033910.1038/jcbfm.2015.70)
      Pathak, D. et al. The role of mitochondrially derived ATP in synaptic vesicle recycling. J. Biol. Chem. 290, 22325–22336 (2015). (PMID: 26126824456620910.1074/jbc.M115.656405)
      Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014). (PMID: 24529383395517910.1016/j.cell.2013.12.042)
      Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017). (PMID: 29045397589881410.1038/nature24057)
      Barros, L. F. & Weber, B. CrossTalk proposal: An important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J. Physiol. 596, 347–350 (2018). (PMID: 29292516579251410.1113/JP274944)
      Bak, L. K. & Walls, A. B. CrossTalk opposing view: Lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J. Physiol. 596, 351–353 (2018). (PMID: 29292507579260610.1113/JP274945)
      Bak, L. K., Schousboe, A. & Waagepetersen, H. S. The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 98, 641–653 (2006). (PMID: 1678742110.1111/j.1471-4159.2006.03913.x)
      Dienel, G. A. Brain lactate metabolism: The discoveries and the controversies. J. Cereb. Blood Flow Metab. 32, 1107–1138 (2012). (PMID: 2218666910.1038/jcbfm.2011.175)
      Li, H. et al. Neurons require glucose uptake and glycolysis in vivo. Cell Rep. 42, 112335 (2023). (PMID: 370272941055620210.1016/j.celrep.2023.112335)
      Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015). (PMID: 2578617410.1016/j.immuni.2015.02.005)
      Lauterbach, M. A. et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51, 997-1011.e7 (2019). (PMID: 3185190510.1016/j.immuni.2019.11.009)
      Noe, J. T. et al. Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci. Adv. 7, eabi8602 (2021). (PMID: 34767443858931610.1126/sciadv.abi8602)
      Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018). (PMID: 29643512603891210.1038/s41586-018-0023-4)
      Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019). (PMID: 3174081410.1038/s41593-019-0532-y)
      Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54, 1594-1610.e11 (2021). (PMID: 34174183818830210.1016/j.immuni.2021.06.002)
      Brown, G. C. Nitric oxide and neuronal death. Nitric Oxide 23, 153–165 (2010). (PMID: 2054723510.1016/j.niox.2010.06.001)
      Joshi, A. U. et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22, 1635–1648 (2019). (PMID: 31551592676458910.1038/s41593-019-0486-0)
      Baik, S. H. et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 30, 493-507.e6 (2019). (PMID: 3125715110.1016/j.cmet.2019.06.005)
      Malkov, A. et al. Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun. Biol. 4, 1054 (2021). (PMID: 34504272842975910.1038/s42003-021-02551-x)
      Kann, O., Papageorgiou, I. E. & Draguhn, A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow Metab. 34, 1270–1282 (2014). (PMID: 24896567412608810.1038/jcbfm.2014.104)
      Jiang, S. et al. Antibiotic drug piperacillin induces neuron cell death through mitochondrial dysfunction and oxidative damage. Can. J. Physiol. Pharmacol. 96, 562–568 (2018). (PMID: 2875973110.1139/cjpp-2016-0679)
      Panov, A. & Orynbayeva, Z. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One 8, e72078 (2013). (PMID: 23951286373852410.1371/journal.pone.0072078)
      Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 68, 1–128 (2019). (PMID: 10.1002/cpbi.86)
      Uran, S., Landmark, K. E., Hjellum, G. & Skotland, T. Quantification of 13 C pyruvate and 13 C lactate in dog blood by reversed-phase liquid chromatography-electrospray ionization mass spectrometry after derivatization with 3-nitrophenylhydrazine. J. Pharm. Biomed. Anal 44, 947–954 (2007). (PMID: 1748241510.1016/j.jpba.2007.04.001)
      Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 2274377210.1038/nmeth.2019)
      Ge, S. X., Son, E. W. & Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 19, 534 (2018). (PMID: 10.1186/s12859-018-2486-6)
      Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 832–847 (2018). (PMID: 2934677810.1016/j.celrep.2017.12.066)
      Huchzermeyer, C. et al. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO 2 and concomitant changes in mitochondrial redox state. J. Neurosci. 28, 1153–1162 (2008). (PMID: 18234893667140910.1523/JNEUROSCI.4105-07.2008)
    • Grant Information:
      ZUK 40/2010-3009262 Deutsche Forschungsgemeinschaft
    • Contributed Indexing:
      Keywords: Glycolysis; Immunometabolism; Lactate oxidation; Microglia; Neuronal oscillations
    • الرقم المعرف:
      IY9XDZ35W2 (Glucose)
      31C4KY9ESH (Nitric Oxide)
      33X04XA5AT (Lactic Acid)
      8L70Q75FXE (Adenosine Triphosphate)
    • الموضوع:
      Date Created: 20240622 Date Completed: 20240622 Latest Revision: 20240625
    • الموضوع:
      20240626
    • الرقم المعرف:
      PMC11193723
    • الرقم المعرف:
      10.1038/s41598-024-64872-1
    • الرقم المعرف:
      38909138