Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: implications for assistive device design and energy demands.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Bajelan S;Bajelan S; Sparrow WAT; Sparrow WAT; Begg R; Begg R
  • المصدر:
    Journal of neuroengineering and rehabilitation [J Neuroeng Rehabil] 2024 Jun 21; Vol. 21 (1), pp. 105. Date of Electronic Publication: 2024 Jun 21.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101232233 Publication Model: Electronic Cited Medium: Internet ISSN: 1743-0003 (Electronic) Linking ISSN: 17430003 NLM ISO Abbreviation: J Neuroeng Rehabil Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London] : BioMed Central, 2004-
    • الموضوع:
    • نبذة مختصرة :
      Background: The ankle is usually highly effective in modulating the swing foot's trajectory to ensure safe ground clearance but there are few reports of ankle kinetics and mechanical energy exchange during the gait cycle swing phase. Previous work has investigated ankle swing mechanics during normal walking but with developments in devices providing dorsiflexion assistance, it is now essential to understand the minimal kinetic requirements for increasing ankle dorsiflexion, particularly for devices employing energy harvesting or utilizing lighter and lower power energy sources or actuators.
      Methods: Using a real-time treadmill-walking biofeedback technique, swing phase ankle dorsiflexion was experimentally controlled to increase foot-ground clearance by 4 cm achieved via increased ankle dorsiflexion. Swing phase ankle moments and dorsiflexor muscle forces were estimated using AnyBody modeling system. It was hypothesized that increasing foot-ground clearance by 4 cm, employing only the ankle joint, would require significantly higher dorsiflexion moments and muscle forces than a normal walking control condition.
      Results: Results did not confirm significantly increased ankle moments with augmented dorsiflexion, with 0.02 N.m/kg at toe-off reducing to zero by the end of swing. Tibialis Anterior muscle force incremented significantly from 2 to 4 N/kg after toe-off, due to coactivation with the Soleus. To ensure an additional 4 cm mid swing foot-ground clearance, an estimated additional 0.003 Joules/kg is required to be released immediately after toe-off.
      Conclusion: This study highlights the interplay between ankle moments, muscle forces, and energy demands during swing phase ankle dorsiflexion, offering insights for the design of ankle assistive technologies. External devices do not need to deliver significantly greater ankle moments to increase ankle dorsiflexion but, they should offer higher mechanical power to provide rapid bursts of energy to facilitate quick dorsiflexion transitions before reaching Minimum Foot Clearance event. Additionally, for ankle-related bio-inspired devices incorporating artificial muscles or humanoid robots that aim to replicate natural ankle biomechanics, the inclusion of supplementary Tibialis Anterior forces is crucial due to Tibialis Anterior and Soleus co-activation. These design strategies ensures that ankle assistive technologies are both effective and aligned with the biomechanical realities of human movement.
      (© 2024. The Author(s).)
    • References:
      J Exp Biol. 2005 Feb;208(Pt 3):439-45. (PMID: 15671332)
      J Biomech. 2007;40(16):3660-71. (PMID: 17659289)
      J Electromyogr Kinesiol. 2010 Feb;20(1):46-54. (PMID: 19201619)
      Clin Biomech (Bristol, Avon). 2020 Mar;73:101-107. (PMID: 31958701)
      J Biomech. 2010 Jan 19;43(2):268-73. (PMID: 19879581)
      J Appl Physiol (1985). 2003 May;94(5):1766-72. (PMID: 12506042)
      J Biomech. 2013 Jul 26;46(11):1842-50. (PMID: 23747230)
      J Biomech Eng. 2002 Feb;124(1):113-20. (PMID: 11871597)
      Gait Posture. 2006 Dec;24(4):493-501. (PMID: 16439130)
      Front Neurol. 2017 Mar 03;8:70. (PMID: 28316588)
      Trends Cogn Sci. 1999 Jun;3(6):233-242. (PMID: 10354577)
      J Electromyogr Kinesiol. 2007 Oct;17(5):605-16. (PMID: 16990012)
      Gait Posture. 2009 Feb;29(2):230-6. (PMID: 18838269)
      J Appl Biomech. 2018 Jun 1;34(3):236-239. (PMID: 29345514)
      Comput Methods Biomech Biomed Engin. 2010;13(2):171-83. (PMID: 19693717)
      Bioinspir Biomim. 2014 Mar;9(1):016007. (PMID: 24434598)
      Trials. 2019 May 31;20(1):317. (PMID: 31151480)
      Ann Biomed Eng. 2013 Aug;41(8):1661-9. (PMID: 23064822)
      Gait Posture. 2007 Feb;25(2):191-8. (PMID: 16678418)
      Crit Rev Biomed Eng. 1989;17(4):359-411. (PMID: 2676342)
      Gait Posture. 2005 Feb;21(2):212-25. (PMID: 15639400)
      J Gerontol A Biol Sci Med Sci. 2000 Mar;55(3):M147-54. (PMID: 10795727)
      J Appl Physiol (1985). 2003 Jul;95(1):172-83. (PMID: 12794096)
      J Gerontol A Biol Sci Med Sci. 1999 Nov;54(11):M583-90. (PMID: 10619322)
      J Biomech. 2000 Mar;33(3):375-9. (PMID: 10673122)
      J Neuroeng Rehabil. 2009 Jun 23;6:23. (PMID: 19549338)
      J Biomech. 2015 Mar 18;48(5):734-41. (PMID: 25627871)
      Clin Biomech (Bristol, Avon). 2011 Nov;26(9):962-8. (PMID: 21719169)
      J Biomech. 1980;13(10):845-54. (PMID: 7462258)
      Med Eng Phys. 2006 Jul;28(6):504-14. (PMID: 16288897)
      IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):755-64. (PMID: 25137730)
      Phys Ther. 1992 Jan;72(1):45-53; discussion 54-6. (PMID: 1728048)
      J Electromyogr Kinesiol. 2013 Dec;23(6):1428-33. (PMID: 23886485)
      J Biomech. 2001 Mar;34(3):409-15. (PMID: 11182135)
      Gait Posture. 2009 Jun;29(4):558-64. (PMID: 19147360)
      Gait Posture. 2018 Mar;61:353-361. (PMID: 29433090)
      J Exp Biol. 2002 Dec;205(Pt 23):3717-27. (PMID: 12409498)
      J Biomech. 2002 Feb;35(2):199-205. (PMID: 11784538)
      J Neurophysiol. 2011 May;105(5):2132-49. (PMID: 21346215)
      Clin Biomech (Bristol, Avon). 1987 Aug;2(3):119-25. (PMID: 23915704)
      Proc Inst Mech Eng H. 2012 Feb;226(2):82-94. (PMID: 22468460)
      Clin Biomech (Bristol, Avon). 2007 Feb;22(2):131-54. (PMID: 17070969)
      J Med Eng Technol. 2006 Nov-Dec;30(6):382-9. (PMID: 17060166)
      PLoS One. 2017 Jul 13;12(7):e0180219. (PMID: 28704464)
      Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):371-84. (PMID: 18949590)
      J Biomech. 2008;41(4):753-61. (PMID: 18177877)
    • Contributed Indexing:
      Keywords: Ankle assistive devices; Ankle dorsiflexion energy; Ankle dorsiflexion moment; Ankle dorsiflexion muscle forces; Ankle foot orthoses; Minimum foot clearance; Swing biomechanics
    • الموضوع:
      Date Created: 20240621 Date Completed: 20240621 Latest Revision: 20241010
    • الموضوع:
      20241010
    • الرقم المعرف:
      PMC11191291
    • الرقم المعرف:
      10.1186/s12984-024-01394-x
    • الرقم المعرف:
      38907255