Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Basel, Switzerland : MDPI, [2000-
    • الموضوع:
    • نبذة مختصرة :
      Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca 2+ ] i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza . By comparing WT and ososca1.1 , the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans -regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis -regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene ( OSlncRNA ), speculating on its origin and evolutionary history in Oryza . In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
    • References:
      J Integr Plant Biol. 2022 Feb;64(2):287-300. (PMID: 35048537)
      Bioessays. 2024 Apr;46(4):e2300201. (PMID: 38351661)
      Plants (Basel). 2023 Nov 23;12(23):. (PMID: 38068585)
      Int J Mol Sci. 2023 Jun 24;24(13):. (PMID: 37445765)
      Mol Plant. 2023 Nov 6;16(11):1733-1742. (PMID: 37740491)
      Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E10018-E10027. (PMID: 29087317)
      Physiol Mol Biol Plants. 2021 Nov;27(11):2605-2619. (PMID: 34916736)
      Plant Physiol. 2023 Nov 22;193(4):2381-2397. (PMID: 37665979)
      BMC Plant Biol. 2020 Feb 19;20(1):81. (PMID: 32075594)
      Nat Rev Mol Cell Biol. 2023 Jun;24(6):430-447. (PMID: 36596869)
      BMC Plant Biol. 2018 Jan 25;18(1):23. (PMID: 29370759)
      Sci Rep. 2023 Apr 11;13(1):5914. (PMID: 37041245)
      Nat Commun. 2021 Nov 11;12(1):6525. (PMID: 34764271)
      Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. (PMID: 30423142)
      Bioinformatics. 2019 Sep 1;35(17):2949-2956. (PMID: 30649200)
      Genome Biol. 2014 Dec 03;15(12):512. (PMID: 25517485)
      Cell. 2013 Jul 3;154(1):26-46. (PMID: 23827673)
      BMC Evol Biol. 2015 Sep 15;15:185. (PMID: 26370559)
      Plant Cell. 2012 Nov;24(11):4333-45. (PMID: 23136377)
      Cell. 2016 Oct 6;167(2):313-324. (PMID: 27716505)
      Nucleic Acids Res. 2020 Jan 8;48(D1):D1104-D1113. (PMID: 31701126)
      G3 (Bethesda). 2019 Aug 8;9(8):2511-2520. (PMID: 31235560)
      New Phytol. 2003 Sep;159(3):585-598. (PMID: 33873603)
      Funct Plant Biol. 2022 Jun;49(7):589-599. (PMID: 35339206)
      Science. 2012 Dec 14;338(6113):1435-9. (PMID: 23239728)
      J Plant Res. 2012 Nov;125(6):693-704. (PMID: 22836383)
      Nat Rev Genet. 2009 Mar;10(3):155-9. (PMID: 19188922)
      BMC Plant Biol. 2015 Oct 26;15:261. (PMID: 26503287)
      Plant Physiol. 2024 Apr 30;195(1):232-244. (PMID: 38246143)
      Mol Plant. 2023 Aug 7;16(8):1339-1353. (PMID: 37553833)
      Imeta. 2022 Jul 04;1(3):e35. (PMID: 38868708)
      Viruses. 2020 Aug 27;12(9):. (PMID: 32867233)
      Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
      RNA. 2022 Aug;28(8):1110-1127. (PMID: 35680167)
      Biology (Basel). 2022 Apr 28;11(5):. (PMID: 35625406)
      Nat Commun. 2018 Aug 29;9(1):3516. (PMID: 30158538)
      Plant Physiol Biochem. 2019 Jul;140:96-104. (PMID: 31085451)
      BMC Genomics. 2016 Aug 08;17:563. (PMID: 27501838)
      Mol Plant. 2020 Aug 3;13(8):1194-1202. (PMID: 32585190)
      Cell. 2011 Dec 23;147(7):1537-50. (PMID: 22196729)
      Plant Cell Physiol. 2016 Jan;57(1):e8. (PMID: 26657895)
      Sci Rep. 2022 Dec 15;12(1):21696. (PMID: 36522395)
      BMC Plant Biol. 2018 May 4;18(1):79. (PMID: 29728055)
      Curr Issues Mol Biol. 2017;23:1-16. (PMID: 28154243)
      Nat Commun. 2021 Jun 3;12(1):3319. (PMID: 34083547)
      J Exp Bot. 2010 Mar;61(3):683-96. (PMID: 20022921)
      BMC Genomics. 2022 Apr 30;23(1):336. (PMID: 35490237)
      Nat Genet. 2008 Nov;40(11):1365-9. (PMID: 18820696)
      Nat Rev Genet. 2014 Jun;15(6):423-37. (PMID: 24776770)
      Sci Rep. 2021 Aug 26;11(1):17203. (PMID: 34446782)
      Plant Physiol. 2017 Nov;175(3):1321-1336. (PMID: 28887353)
      Nucleic Acids Res. 2006 Jan 1;34(Database issue):D745-8. (PMID: 16381972)
      Genome Res. 2003 Nov;13(11):2498-504. (PMID: 14597658)
      J Genet. 2022;101:. (PMID: 35975818)
      Annu Rev Plant Biol. 2009;60:433-53. (PMID: 19575588)
      Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8. (PMID: 18039703)
      Rice (N Y). 2013 Feb 06;6(1):4. (PMID: 24280374)
      Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4954-62. (PMID: 25368197)
      Cell Rep. 2015 May 19;11(7):1110-22. (PMID: 25959816)
      PLoS One. 2023 Nov 9;18(11):e0294236. (PMID: 37943830)
      Gene. 2021 Feb 5;768:145278. (PMID: 33166596)
      Plant J. 2015 Oct;84(2):404-16. (PMID: 26387578)
      Nucleic Acids Res. 2021 Jan 8;49(D1):D1489-D1495. (PMID: 33079992)
      Nat Biotechnol. 2011 Jan;29(1):24-6. (PMID: 21221095)
      Wiley Interdiscip Rev RNA. 2022 Jul;13(4):e1708. (PMID: 34981665)
      Plant Physiol Biochem. 2021 Nov;168:373-380. (PMID: 34710757)
      Nat Rev Genet. 2016 Oct;17(10):601-14. (PMID: 27573374)
      Genes (Basel). 2019 Feb 13;10(2):. (PMID: 30781862)
      Plant Commun. 2024 Mar 11;5(3):100782. (PMID: 38148603)
      Cell. 2018 Jan 25;172(3):393-407. (PMID: 29373828)
      BMC Bioinformatics. 2008 Dec 29;9:559. (PMID: 19114008)
      Int J Mol Sci. 2021 Jul 29;22(15):. (PMID: 34360920)
      Nature. 2014 Oct 16;514(7522):367-71. (PMID: 25162526)
      Nat Commun. 2018 Nov 29;9(1):5060. (PMID: 30498218)
      Microbiol Spectr. 2023 Feb 14;11(1):e0214522. (PMID: 36511682)
      Front Plant Sci. 2020 Mar 19;11:218. (PMID: 32265948)
      Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14309-14318. (PMID: 31227607)
      BMC Plant Biol. 2019 Feb 28;19(1):88. (PMID: 30819118)
      BMC Plant Biol. 2016 Apr 14;16:86. (PMID: 27079791)
      BMC Plant Biol. 2007 Jan 30;7:4. (PMID: 17263873)
      Nucleic Acids Res. 2017 Jul 3;45(W1):W12-W16. (PMID: 28521017)
      Nat Rev Genet. 2022 Feb;23(2):104-119. (PMID: 34561623)
      Int J Mol Sci. 2021 Dec 31;23(1):. (PMID: 35008895)
      Plant Cell. 2023 May 29;35(6):1762-1786. (PMID: 36738093)
      BMC Genomics. 2018 May 29;19(1):414. (PMID: 29843593)
      Plant Cell. 2022 Aug 25;34(9):3233-3260. (PMID: 35666179)
      Plant Mol Biol. 2014 Jan;84(1-2):19-36. (PMID: 23918260)
      Nat Rev Genet. 2024 Apr 17;:. (PMID: 38632496)
      Int J Mol Sci. 2022 Sep 12;23(18):. (PMID: 36142482)
      BMC Plant Biol. 2023 Dec 15;23(1):646. (PMID: 38097981)
      Int J Biol Macromol. 2023 Dec 31;253(Pt 1):126558. (PMID: 37659489)
      Trends Genet. 2024 May 3;:. (PMID: 38704304)
      Annu Rev Cell Dev Biol. 2019 Oct 6;35:407-431. (PMID: 31403819)
      Nat Rev Mol Cell Biol. 2021 Feb;22(2):96-118. (PMID: 33353982)
      BMC Biol. 2017 Aug 16;15(1):71. (PMID: 28814299)
      Hortic Res. 2021 Mar 1;8(1):48. (PMID: 33642591)
      BMC Genomics. 2022 Jan 13;23(1):50. (PMID: 35026983)
      BMC Plant Biol. 2015 Jun 06;15:131. (PMID: 26048392)
      Plant Genome. 2024 Mar;17(1):e20273. (PMID: 36285722)
      Mol Biol Rep. 2023 Sep;50(9):7381-7392. (PMID: 37450076)
    • Grant Information:
      32270346 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: LncRNAs; OSCA1.1; PCGs; hyperosmolarity stress; rice; salt stress
    • الرقم المعرف:
      0 (RNA, Long Noncoding)
      0 (RNA, Plant)
    • الموضوع:
      Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240620
    • الموضوع:
      20240620
    • الرقم المعرف:
      PMC11172603
    • الرقم المعرف:
      10.3390/ijms25116226
    • الرقم المعرف:
      38892412