Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Reconstruction of Segmental Bone Defect in Canine Tibia Model Utilizing Bi-Phasic Scaffold: Pilot Study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Basel, Switzerland : MDPI, [2000-
    • الموضوع:
    • نبذة مختصرة :
      The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230-430 μm as primary pores, 40-70 μm as secondary inner microchannels, and 200-400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation.
    • References:
      Drug Deliv Transl Res. 2016 Apr;6(2):77-95. (PMID: 26014967)
      Biomaterials. 2010 Apr;31(12):3222-30. (PMID: 20144476)
      Clin Oral Implants Res. 2008 Feb;19(2):166-72. (PMID: 18039337)
      Clin Orthop Relat Res. 1994 Apr;(301):111-7. (PMID: 8156661)
      Semin Nucl Med. 2015 Jan;45(1):3-15. (PMID: 25475375)
      J Trauma. 2006 Feb;60(2):432-42. (PMID: 16508513)
      J Bone Joint Surg Am. 2002 Jul;84(7):1221-34. (PMID: 12107327)
      Int J Rad Appl Instrum B. 1991;18(2):235-40. (PMID: 2026500)
      Connect Tissue Res. 1989;20(1-4):303-12. (PMID: 2692957)
      Int Orthop. 2013 Nov;37(11):2231-7. (PMID: 24013459)
      Ann Anat. 2021 May;235:151704. (PMID: 33600952)
      Clin Orthop Relat Res. 1994 Apr;(301):118-23. (PMID: 8156662)
      Acta Orthop Belg. 2004 Dec;70(6):591-7. (PMID: 15669462)
      Cancer Control. 2017 Apr;24(2):137-146. (PMID: 28441368)
      J Bone Joint Surg Am. 1980 Oct;62(7):1150-5. (PMID: 7430201)
      Biomaterials. 2010 Feb;31(6):1171-9. (PMID: 19880177)
      J Trauma. 1971 Sep;11(9):778-88. (PMID: 4937678)
      J Long Term Eff Med Implants. 2018;28(1):9-13. (PMID: 29772987)
      Ulus Travma Acil Cerrahi Derg. 2006 Oct;12(4):268-76. (PMID: 17029116)
      J Vis Exp. 2015 Sep 11;(103):. (PMID: 26380953)
      Orthop Clin North Am. 1994 Oct;25(4):753-63. (PMID: 8090484)
      Int J Oral Maxillofac Implants. 2023 Dec 12;38(6):1191-1199. (PMID: 38085751)
      ANZ J Surg. 2001 Jun;71(6):354-61. (PMID: 11409021)
      Int J Oral Maxillofac Surg. 1996 Oct;25(5):366-9. (PMID: 8961018)
      Biomaterials. 2007 Feb;28(6):1005-13. (PMID: 17092556)
      J Biomed Mater Res A. 2009 Jun 15;89(4):1019-27. (PMID: 18478555)
      J Orthop Res. 2008 Oct;26(10):1363-70. (PMID: 18404698)
      Int Orthop. 2015 May;39(5):1005-11. (PMID: 25772279)
      Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:539-563. (PMID: 31029349)
      J Orthop Res. 2007 Jun;25(6):741-9. (PMID: 17318898)
      Angiogenesis. 2017 Aug;20(3):291-302. (PMID: 28194536)
      Tissue Eng Regen Med. 2022 Dec;19(6):1337-1347. (PMID: 36161585)
      J Bone Joint Surg Am. 1987 Jan;69(1):19-27. (PMID: 3543018)
      J Cell Physiol. 2019 Apr;234(4):3321-3335. (PMID: 30187477)
      J Oral Maxillofac Surg. 2004 Feb;62(2):202-13. (PMID: 14762753)
      Mater Sci Eng C Mater Biol Appl. 2020 May;110:110622. (PMID: 32204064)
      Joint Bone Spine. 2010 Dec;77(6):521-4. (PMID: 20980183)
    • Contributed Indexing:
      Keywords: canine model; ceramic; hydroxyapatite; reconstruction; scaffold; segmental bone defect
    • الرقم المعرف:
      91D9GV0Z28 (Durapatite)
      0 (Bone Substitutes)
    • الموضوع:
      Date Created: 20240511 Date Completed: 20240511 Latest Revision: 20240513
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC11083235
    • الرقم المعرف:
      10.3390/ijms25094604
    • الرقم المعرف:
      38731827