Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Tying the knot: Unraveling the intricacies of the coronavirus frameshift pseudoknot.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Trinity L;Trinity L; Stege U; Stege U; Jabbari H; Jabbari H; Jabbari H
  • المصدر:
    PLoS computational biology [PLoS Comput Biol] 2024 May 07; Vol. 20 (5), pp. e1011787. Date of Electronic Publication: 2024 May 07 (Print Publication: 2024).
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science, [2005]-
    • الموضوع:
    • نبذة مختصرة :
      Understanding and targeting functional RNA structures towards treatment of coronavirus infection can help us to prepare for novel variants of SARS-CoV-2 (the virus causing COVID-19), and any other coronaviruses that could emerge via human-to-human transmission or potential zoonotic (inter-species) events. Leveraging the fact that all coronaviruses use a mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to replicate, we apply algorithms to predict the most energetically favourable secondary structures (each nucleotide involved in at most one pairing) that may be involved in regulating the -1 PRF event in coronaviruses, especially SARS-CoV-2. We compute previously unknown most stable structure predictions for the frameshift site of coronaviruses via hierarchical folding, a biologically motivated framework where initial non-crossing structure folds first, followed by subsequent, possibly crossing (pseudoknotted), structures. Using mutual information from 181 coronavirus sequences, in conjunction with the algorithm KnotAli, we compute secondary structure predictions for the frameshift site of different coronaviruses. We then utilize the Shapify algorithm to obtain most stable SARS-CoV-2 secondary structure predictions guided by frameshift sequence-specific and genome-wide experimental data. We build on our previous secondary structure investigation of the singular SARS-CoV-2 68 nt frameshift element sequence, by using Shapify to obtain predictions for 132 extended sequences and including covariation information. Previous investigations have not applied hierarchical folding to extended length SARS-CoV-2 frameshift sequences. By doing so, we simulate the effects of ribosome interaction with the frameshift site, providing insight to biological function. We contribute in-depth discussion to contextualize secondary structure dual-graph motifs for SARS-CoV-2, highlighting the energetic stability of the previously identified 3_8 motif alongside the known dominant 3_3 and 3_6 (native-type) -1 PRF structures. Using a combination of thermodynamic methods and sequence covariation, our novel predictions suggest function of the attenuator hairpin via previously unknown pseudoknotted base pairing. While certain initial RNA folding is consistent, other pseudoknotted base pairs form which indicate potential conformational switching between the two structures.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Trinity et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Nucleic Acids Res. 2012 Jan;40(Database issue):D593-8. (PMID: 22006842)
      J Mol Biol. 1999 Jun 18;289(4):935-47. (PMID: 10369773)
      Virus Res. 2009 Feb;139(2):193-208. (PMID: 18621088)
      PLoS Comput Biol. 2021 Jan 19;17(1):e1008603. (PMID: 33465066)
      Antiviral Res. 2022 Dec;208:105452. (PMID: 36341734)
      Proc Natl Acad Sci U S A. 2021 Jun 29;118(26):. (PMID: 34185680)
      Front Mol Biosci. 2022 Feb 14;9:842261. (PMID: 35281266)
      Int J Mol Sci. 2019 Aug 23;20(17):. (PMID: 31450739)
      Bioinformatics. 2012 Dec 1;28(23):3150-2. (PMID: 23060610)
      J Mol Biol. 1999 Oct 22;293(2):271-81. (PMID: 10550208)
      RNA. 2010 Jan;16(1):26-42. (PMID: 19933322)
      J Mol Biol. 2008 Jan 11;375(2):511-28. (PMID: 18021801)
      Nat Commun. 2021 Aug 25;12(1):5113. (PMID: 34433821)
      J Am Chem Soc. 2014 Feb 12;136(6):2196-9. (PMID: 24446874)
      PLoS Comput Biol. 2023 Feb 28;19(2):e1010922. (PMID: 36854032)
      Viruses. 2021 Aug 18;13(8):. (PMID: 34452503)
      Biophys J. 2021 Mar 16;120(6):1040-1053. (PMID: 33096082)
      ACS Chem Biol. 2021 Aug 20;16(8):1469-1481. (PMID: 34328734)
      J Mol Biol. 2020 Oct 2;432(21):5843-5847. (PMID: 32920049)
      Nucleic Acids Res. 2019 Jul 2;47(W1):W26-W34. (PMID: 31114927)
      Nucleic Acids Res. 2002 May 1;30(9):1911-8. (PMID: 11972327)
      Nucleic Acids Res. 2016 Sep 6;44(15):7007-78. (PMID: 27436286)
      Science. 2021 Jun 18;372(6548):1306-1313. (PMID: 34029205)
      J Am Chem Soc. 2005 Apr 6;127(13):4659-67. (PMID: 15796531)
      BMC Bioinformatics. 2022 May 3;23(1):159. (PMID: 35505276)
      Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92. (PMID: 15123812)
      Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12706-11. (PMID: 19628688)
      Bioinformatics. 2015 Sep 1;31(17):2891-3. (PMID: 25910700)
      Cell. 2015 Feb 26;160(5):870-881. (PMID: 25703095)
      RNA. 2008 Jun;14(6):1164-73. (PMID: 18456842)
      Nat Methods. 2014 Sep;11(9):959-65. (PMID: 25028896)
      J Am Chem Soc. 2021 Aug 4;143(30):11404-11422. (PMID: 34283611)
      Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5498-503. (PMID: 23503844)
      Nucleic Acids Res. 2023 Jan 25;51(2):728-743. (PMID: 36537211)
      PLoS Comput Biol. 2023 May 19;19(5):e1011124. (PMID: 37205708)
      Nucleic Acids Res. 2023 Nov 10;51(20):11332-11344. (PMID: 37819014)
      Mol Ther. 2023 Jun 7;31(6):1675-1687. (PMID: 36945774)
      Nat Struct Mol Biol. 2021 Sep;28(9):747-754. (PMID: 34426697)
      J Mol Biol. 1999 May 21;288(5):911-40. (PMID: 10329189)
      J Biol Chem. 2020 Jul 31;295(31):10741-10748. (PMID: 32571880)
      BMC Bioinformatics. 2004 Jul 06;5:88. (PMID: 15238163)
      Nucleic Acids Res. 2018 Jul 2;46(W1):W30-W35. (PMID: 29718468)
      Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2221324120. (PMID: 37155888)
      Annu Rev Biophys Biophys Chem. 1988;17:167-92. (PMID: 2456074)
      Euro Surveill. 2017 Mar 30;22(13):. (PMID: 28382917)
      Science. 1991 Dec 13;254(5038):1598-603. (PMID: 1749933)
      Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452. (PMID: 33166999)
      Bioinformatics. 2020 May 1;36(10):3072-3076. (PMID: 32031582)
      Methods Enzymol. 2009;468:371-87. (PMID: 20946778)
      Biophys J. 2010 Feb 17;98(4):627-36. (PMID: 20159159)
      Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17349-54. (PMID: 19805055)
      Bioinformatics. 2011 Jul 1;27(13):i85-93. (PMID: 21685106)
      Nat Commun. 2022 Jul 25;13(1):4284. (PMID: 35879278)
      Int J Mol Sci. 2023 Aug 31;24(17):. (PMID: 37686306)
      J Med Virol. 2020 Apr;92(4):418-423. (PMID: 31967327)
      Wiley Interdiscip Rev RNA. 2012 Sep-Oct;3(5):661-73. (PMID: 22715123)
      Elife. 2021 Feb 23;10:. (PMID: 33620031)
      Biomolecules. 2023 Nov 17;13(11):. (PMID: 38002341)
      Nucleic Acids Res. 2018 Oct 12;46(18):9736-9748. (PMID: 30011005)
      Nature. 2008 Mar 6;452(7183):51-5. (PMID: 18322526)
      Nucleic Acids Res. 2015 Jan;43(Database issue):D571-7. (PMID: 25428358)
      ACS Med Chem Lett. 2023 May 11;14(6):757-765. (PMID: 37312842)
      Mol Cell. 2021 Feb 4;81(3):584-598.e5. (PMID: 33444546)
      Nucleic Acids Res. 2003 Jun 1;31(11):2926-43. (PMID: 12771219)
      PLoS Biol. 2005 Jun;3(6):e172. (PMID: 15884978)
      Cell Rep. 2023 Feb 28;42(2):112076. (PMID: 36753415)
      Virology. 2021 Feb;554:75-82. (PMID: 33387787)
      Nat Commun. 2022 Mar 2;13(1):1128. (PMID: 35236847)
      Viruses. 2022 Jan 18;14(2):. (PMID: 35215770)
      RNA. 2005 Oct;11(10):1494-504. (PMID: 16199760)
      Nat Commun. 2021 Aug 6;12(1):4749. (PMID: 34362921)
      Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16167-72. (PMID: 22988073)
      Cold Spring Harb Perspect Biol. 2018 Oct 1;10(10):. (PMID: 30275276)
      Bioinformatics. 2013 Nov 15;29(22):2933-5. (PMID: 24008419)
      Front Genet. 2020 Oct 26;11:574485. (PMID: 33193680)
      Clin Microbiol Infect. 2020 Jun;26(6):729-734. (PMID: 32234451)
      Biophys J. 2023 Apr 18;122(8):1503-1516. (PMID: 36924021)
      Methods Mol Biol. 2016;1490:199-215. (PMID: 27665601)
      Int J Mol Sci. 2022 Aug 17;23(16):. (PMID: 36012512)
    • الموضوع:
      Date Created: 20240507 Date Completed: 20240521 Latest Revision: 20240523
    • الموضوع:
      20240523
    • الرقم المعرف:
      PMC11108256
    • الرقم المعرف:
      10.1371/journal.pcbi.1011787
    • الرقم المعرف:
      38713726