Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Predicting over-the-counter antibiotic use in rural Pune, India, using machine learning methods.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- المصدر:
Publisher: Korean Society of Epidemiology Country of Publication: Korea (South) NLM ID: 101519472 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2092-7193 (Electronic) Linking ISSN: 20927193 NLM ISO Abbreviation: Epidemiol Health Subsets: MEDLINE
- بيانات النشر:
Original Publication: Seoul : Korean Society of Epidemiology
- الموضوع:
- نبذة مختصرة :
Objectives: Over-the-counter (OTC) antibiotic use can cause antibiotic resistance, threatening global public health gains. To counter OTC use, this study used machine learning (ML) methods to identify predictors of OTC antibiotic use in rural Pune, India.
Methods: The features of OTC antibiotic use were selected using stepwise logistic, lasso, random forest, XGBoost, and Boruta algorithms. Regression and tree-based models with all confirmed and tentatively important features were built to predict the use of OTC antibiotics. Five-fold cross-validation was used to tune the models' hyperparameters. The final model was selected based on the highest area under the curve (AUROC) with a 95% confidence interval (CI) and the lowest log-loss.
Results: In rural Pune, the prevalence of OTC antibiotic use was 35.9% (95% CI, 31.6 to 40.5). The perception that buying medicines directly from a medicine shop/pharmacy is useful, using antibiotics for eye-related complaints, more household members consuming antibiotics, and longer duration and higher doses of antibiotic consumption in rural blocks and other social groups were confirmed as important features by the Boruta algorithm. The final model was the XGBoost+Boruta model with 7 predictors (AUROC, 0.934; 95% CI, 0.891 to 0.978; log-loss, 0.279) log-loss.
Conclusions: XGBoost+Boruta, with 7 predictors, was the most accurate model for predicting OTC antibiotic use in rural Pune. Using OTC antibiotics for eye-related complaints, higher consumption of antibiotics and the perception that buying antibiotics directly from a medicine shop/pharmacy is useful were identified as key factors for planning interventions to improve awareness about proper antibiotic use.
- References:
Antibiotics (Basel). 2021 Nov 10;10(11):. (PMID: 34827314)
Bioinformatics. 2018 May 15;34(10):1666-1671. (PMID: 29240876)
Microbiome. 2018 Feb 01;6(1):23. (PMID: 29391044)
Antibiotics (Basel). 2022 Feb 24;11(3):. (PMID: 35326768)
Pharm Pract (Granada). 2021 Jan-Mar;19(1):2206. (PMID: 33828621)
Int J Environ Res Public Health. 2022 Sep 02;19(17):. (PMID: 36078704)
Antibiotics (Basel). 2020 Jan 31;9(2):. (PMID: 32023854)
Yearb Med Inform. 2022 Aug;31(1):273-275. (PMID: 36463885)
BMC Med Res Methodol. 2021 Jul 31;21(1):158. (PMID: 34332525)
Antibiotics (Basel). 2021 Sep 17;10(9):. (PMID: 34572705)
Commun Med (Lond). 2022 Apr 8;2:38. (PMID: 35603264)
Front Genet. 2020 Nov 06;11:563975. (PMID: 33240317)
BMJ Glob Health. 2021 May;6(5):. (PMID: 33975888)
J Clin Microbiol. 2021 Jun 18;59(7):e0126020. (PMID: 33536291)
Infect Drug Resist. 2009;2:1-11. (PMID: 21694883)
Bioinformatics. 2019 Jul 1;35(13):2276-2282. (PMID: 30462147)
Front Microbiol. 2020 Feb 06;11:48. (PMID: 32117101)
BMC Health Serv Res. 2019 Jul 31;19(1):536. (PMID: 31366363)
Int J Health Geogr. 2022 Jun 6;21(1):4. (PMID: 35668432)
Antimicrob Resist Infect Control. 2020 Nov 2;9(1):171. (PMID: 33138859)
Braz J Infect Dis. 2022 Jan-Feb;26(1):102332. (PMID: 35176257)
Int J Antimicrob Agents. 2022 Sep;60(3):106620. (PMID: 35724859)
Yearb Med Inform. 2016 Nov 10;(1):247-250. (PMID: 27830258)
Antibiotics (Basel). 2022 Jun 08;11(6):. (PMID: 35740190)
JAC Antimicrob Resist. 2020 Oct 16;2(4):dlaa082. (PMID: 34223037)
BMJ Glob Health. 2019 Nov 01;4(6):e001869. (PMID: 31798998)
Cell. 2020 Feb 20;180(4):688-702.e13. (PMID: 32084340)
Antibiotics (Basel). 2022 Nov 10;11(11):. (PMID: 36421237)
PLoS Comput Biol. 2022 Mar 25;18(3):e1010018. (PMID: 35333870)
Annu Rev Public Health. 2020 Apr 2;41:21-36. (PMID: 31577910)
Bioinformatics. 2022 Jan 3;38(2):325-334. (PMID: 34613360)
Entropy (Basel). 2019 Jun 18;21(6):. (PMID: 33267317)
Antibiotics (Basel). 2023 Feb 24;12(3):. (PMID: 36978319)
Wellcome Open Res. 2018 Oct 10;3:131. (PMID: 30756093)
- Contributed Indexing:
Keywords: Algorithm; Antibiotic; Antibiotic resistance; India; Machine learning; Pharmacy
- الرقم المعرف:
0 (Nonprescription Drugs)
0 (Anti-Bacterial Agents)
- الموضوع:
Date Created: 20240419 Date Completed: 20240809 Latest Revision: 20250212
- الموضوع:
20250213
- الرقم المعرف:
PMC11417445
- الرقم المعرف:
10.4178/epih.e2024044
- الرقم المعرف:
38637971
No Comments.