Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Comparative proteomic analysis of papaya bud flowers reveals metabolic signatures and pathways driving hermaphrodite development.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMS E technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.
      (© 2024. The Author(s).)
    • References:
      Plant Cell Physiol. 2010 Jun;51(6):896-911. (PMID: 20484369)
      PLoS One. 2020 Oct 15;15(10):e0239230. (PMID: 33057394)
      Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13710-5. (PMID: 22869747)
      Plant J. 2020 Sep;104(1):252-267. (PMID: 32662159)
      Nat Genet. 2022 May;54(5):715-724. (PMID: 35551309)
      J Exp Bot. 2007;58(11):2799-810. (PMID: 17615411)
      PLoS One. 2012;7(7):e40904. (PMID: 22815863)
      Genome Res. 2015 Apr;25(4):524-33. (PMID: 25762551)
      Int J Mol Sci. 2022 Jun 05;23(11):. (PMID: 35683004)
      New Phytol. 2017 Jan;213(1):250-263. (PMID: 27513887)
      Phytochemistry. 2007 Jul;68(14):1957-74. (PMID: 17467016)
      Plant Cell Physiol. 2001 Oct;42(10):1025-33. (PMID: 11673616)
      Curr Biol. 2002 Oct 29;12(21):1840-5. (PMID: 12419184)
      Plant J. 2008 Jan;53(1):124-32. (PMID: 17973896)
      Front Plant Sci. 2016 Oct 04;7:1502. (PMID: 27757120)
      J Biol Chem. 2006 Jun 23;281(25):17276-17285. (PMID: 16644739)
      Plant Sci. 2015 Oct;239:192-9. (PMID: 26398803)
      Front Plant Sci. 2018 Aug 14;9:1208. (PMID: 30154820)
      Proteomics. 2015 Mar;15(5-6):1089-112. (PMID: 25487722)
      Am J Bot. 2005 Jul;92(7):1068-76. (PMID: 21646128)
      Proteome Sci. 2021 Apr 22;19(1):8. (PMID: 33888140)
      Plant Mol Biol. 2001 Sep;47(1-2):9-27. (PMID: 11554482)
      J Exp Bot. 2014 Oct;65(18):5125-60. (PMID: 25056773)
      Hortic Res. 2021 Jun 1;8(1):125. (PMID: 34059667)
      Plant Biol (Stuttg). 2012 Mar;14(2):365-73. (PMID: 21972933)
      Biosci Biotechnol Biochem. 2004 Jun;68(6):1175-84. (PMID: 15215578)
      Plant J. 2004 Sep;39(5):715-33. (PMID: 15315634)
      Nature. 2004 Jan 22;427(6972):348-52. (PMID: 14737167)
      J Mol Model. 2009 Feb;15(2):203-21. (PMID: 19048314)
      BMC Genomics. 2022 Jan 5;23(1):8. (PMID: 34983382)
      Hortic Res. 2021 Jul 1;8(1):147. (PMID: 34193826)
      Hortic Res. 2022 Jan 20;:. (PMID: 35048102)
      Genetics. 2004 Jan;166(1):419-36. (PMID: 15020433)
      Plant Physiol. 2002 Oct;130(2):740-56. (PMID: 12376641)
      Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2226-31. (PMID: 18256186)
      Mol Plant. 2011 Jan;4(1):70-82. (PMID: 20829305)
      Nat Protoc. 2016 Apr;11(4):795-812. (PMID: 27010757)
      Mol Plant. 2020 Nov 2;13(11):1644-1653. (PMID: 32810599)
      Plant Cell. 2010 Dec;22(12):4067-83. (PMID: 21193572)
      Plant Cell. 2005 Jul;17(7):2059-76. (PMID: 15937231)
      Plant Sci. 2014 Mar;217-218:56-62. (PMID: 24467896)
      Nat Methods. 2014 Feb;11(2):167-70. (PMID: 24336358)
      Int J Mol Sci. 2018 Sep 21;19(10):. (PMID: 30248977)
      Planta. 2008 Mar;227(4):741-53. (PMID: 17985156)
      Mol Plant. 2010 Jan;3(1):2-20. (PMID: 20035037)
      New Phytol. 2019 Jan;221(1):527-539. (PMID: 30252135)
      Nat Methods. 2009 May;6(5):359-62. (PMID: 19377485)
      J Proteome Res. 2012 Jan 1;11(1):372-85. (PMID: 22136409)
      Plant Physiol. 2020 Oct;184(2):806-822. (PMID: 32699027)
      Sci Rep. 2021 Mar 12;11(1):5854. (PMID: 33712672)
      Plant Cell. 2019 Apr;31(4):848-861. (PMID: 30886127)
      BMC Plant Biol. 2019 Dec 9;19(1):545. (PMID: 31818257)
      Planta. 2001 May;213(1):71-9. (PMID: 11523658)
      Mol Cell Proteomics. 2006 Jan;5(1):144-56. (PMID: 16219938)
      BMC Plant Biol. 2019 Jul 23;19(1):330. (PMID: 31337343)
      Food Chem. 2019 Sep 30;293:299-306. (PMID: 31151615)
      Hortic Res. 2021 Oct 1;8(1):207. (PMID: 34593769)
      BMC Plant Biol. 2009 Jan 16;9:6. (PMID: 19149885)
    • Contributed Indexing:
      Keywords: Floral development; Papaya; Proteome; Sexual differentiation
    • الرقم المعرف:
      12712-72-0 (sporopollenin)
      0 (Biopolymers)
      36-88-4 (Carotenoids)
    • الموضوع:
      Date Created: 20240417 Date Completed: 20240419 Latest Revision: 20240425
    • الموضوع:
      20240425
    • الرقم المعرف:
      PMC11024100
    • الرقم المعرف:
      10.1038/s41598-024-59306-x
    • الرقم المعرف:
      38632280